Published online by Cambridge University Press: 26 April 2006
A simple morphological model is considered which describes the interaction between a unidirectional flow and an erodible bed in a straight channel. For sufficiently large values of the width-depth ratio of the channel the basic state, i.e. a uniform current over a flat bottom, is unstable. At near-critical conditions growing perturbations are confined to a narrow spectrum and the bed profile has an alternate bar structure propagating in the downstream direction. The timescale associated with the amplitude growth is large compared to the characteristic period of the bars. Based on these observations a weakly nonlinear analysis is presented which results in a Ginzburg-Landau equation. It describes the nonlinear evolution of the envelope amplitude of the group of marginally unstable alternate bars. Asymptotic results of its coefficients are presented as perturbation series in the small drag coefficient of the channel. In contrast to the Landau equation, described by Colombini et al. (1987), this amplitude equation also allows for spatial modulations due to the dispersive properties of the wave packet. It is demonstrated rigorously that the periodic bar pattern can become unstable through this effect, provided the bed is dune covered, and for realistic values of the other physical parameters. Otherwise, it is found that the periodic bar pattern found by Colombini et al. (1987) is stable. Assuming periodic behaviour of the envelope wave in a frame moving with the group velocity, simulations of the dynamics of the Ginzburg-Landau equation using spectral models are carried out, and it is shown that quasi-periodic behaviour of the bar pattern appears.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.