Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T08:54:16.526Z Has data issue: false hasContentIssue false

On the roughness instability of growing boundary layers

Published online by Cambridge University Press:  13 July 2021

Philip Hall*
Affiliation:
School of Mathematics, Monash University, Clayton, Victoria, Australia
*
Email address for correspondence: phil.hall@monash.edu

Abstract

The streamwise vortex instability of boundary layers caused by wall roughness in the form of surface undulations is investigated. The instability is characterised by a roughness parameter $\varGamma$ depending on the geometry and fluid properties. At $O(1)$ values of $\varGamma$ disturbances develop on the same length scale as the basic boundary layer flow. The instability is driven by a boundary condition relating the disturbance wall shears in the streamwise and normal directions. The undulations have a wavelength comparable with the boundary layer depth and the amplitude is asymptotically small compared with the depth. If the roughness parameter is large then, apart from a narrow window of vortex wavenumbers, the instability responds in a quasi-parallel manner. Falkner–Skan boundary layers are considered in detail and the dependence on the angle of the wedge associated with the flows investigated. A particular susceptibility to roughness instabilities of flows past $90^{\circ }$ wedges is uncovered. The limits of small and large wavenumbers are considered and universal results given for the critical roughness height $h$ and wavelength $b$ needed for instability.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bassom, A.P. & Hall, P. 1993 The receptivity problem for $O(1)$ wavelength Görtler vortices. Proc. R. Soc. A446, 499516.Google Scholar
Carmichael, B.H. 1959 Surface waviness criteria for swept and unswept laminar suction wings. Norair Rep. NOR 59–438.Google Scholar
Carmichael, B.H., Whites, R.C. & Pfenninger, W. 1957 Low-drag boundary-layer suction experiment in flight on the wing glove of a F-94A airplane. Northrop Aircraft Rep. No. NA1-57-1163 (BLC-101).Google Scholar
Choudhari, M., Hall, P. & Street, C. 1994 On the spatial evolution of long wavelength Görtler vortices governed by a viscous-inviscid interaction: part 1 the linear case. Q. J. Mech. Appl. Maths 47, 207230.10.1093/qjmam/47.2.207CrossRefGoogle Scholar
Cotrell, D.L., McFadden, G.B. & Alder, B.J. 2008 Instability in pipe flow. Proc. Natl Acad. Sci. USA 105, 428430.10.1073/pnas.0709172104CrossRefGoogle ScholarPubMed
Deguchi, K. & Hall, P. 2014 Canonical exact coherent structures embedded in high Reynolds number flows. Phil. Trans. R. Soc. Lond. A372, 120.Google Scholar
Denier, J., Hall, P. & Seddougui, S.O. 1991 On the receptivity problem for Görtler vortices: vortex motions induced by wall roughness. Phil. Trans. R. Soc. Lond. A 335, 5185.Google Scholar
Fage, A. 1943 The smallest size of a spanwise surface corrugation which affects the drag of a laminar flow aerofoil. British ARC Reports and Memorandum 2120.Google Scholar
Floryan, J.M. 1991 On the Görtler instability of boundary layers. Prog. Aerosp. Sci. 28, 235271.10.1016/0376-0421(91)90006-PCrossRefGoogle Scholar
Floryan, J.M. 2002 Centrifugal instability of flow over a wavy wall. Phys. Fluids 14, 312322.10.1063/1.1416185CrossRefGoogle Scholar
Floryan, J.M. 2003 Vortex instability in a diverging converging channel. J. Fluid Mech. 482, 1750.10.1017/S0022112003003987CrossRefGoogle Scholar
Floryan, J.M. 2015 Flow in a meandering channel. J. Fluid Mech. 770, 5284.10.1017/jfm.2015.135CrossRefGoogle Scholar
Gajjar, J. & Hall, P. 2020 Centrifugal/elliptic instabilities in slowly-varying channel flows. J. Fluid Mech. 903, A27.10.1017/jfm.2020.641CrossRefGoogle Scholar
Gaster, M. 1974 On the effects of boundary layer growth on flow stability. J. Fluid Mech. 66, 465480.10.1017/S0022112074000310CrossRefGoogle Scholar
Goldstein, M.E. 1985 Scattering of acoustic waves into Tollmien–Schlichting waves by small streamwise variations in geometry. J. Fluid Mech. 154, 509529.10.1017/S0022112085001641CrossRefGoogle Scholar
Görtler, H. 1940 On the three-dimensional instability of laminar boundary layers on concave walls. Tech. Memo. Natn. advis. Comm. Aeronaut., Wash. No. 1375, 32.Google Scholar
Gschwind, P., Regele, A. & Kottke, V. 1995 Sinusoidal wavy channels with Taylor–Görtler vortices. Expl Therm. Sci. 11, 270275.10.1016/0894-1777(95)00056-RCrossRefGoogle Scholar
Hall, P. 1982 Taylor–Görtler vortices in fully developed or boundary-layer flows: linear theory. J. Fluid Mech. 124, 475494.10.1017/S0022112082002596CrossRefGoogle Scholar
Hall, P. 1983 The linear development of Görtler vortices in growing boundary layers. J. Fluid Mech. 130, 4158.10.1017/S0022112083000968CrossRefGoogle Scholar
Hall, P. 1986 An asymptotic investigation of the stationary modes of instability of the 3-boundary layer on a rotating disc. Proc. R. Soc. Lond. A 406, 93106.Google Scholar
Hall, P. 1988 The nonlinear development of Görtler vortices in growing boundary layers. J. Fluid Mech. 93, 243266.10.1017/S0022112088002137CrossRefGoogle Scholar
Hall, P. 1990 Görtler vortices in growing boundary layers: the leading edge receptivity problem, linear growth and the nonlinear breakdown stage. Mathematika 37, 151189.10.1112/S0025579300012894CrossRefGoogle Scholar
Hall, P. 2018 Vortex-wave interaction arrays: a sustaining mechanism for the log layer? J. Fluid Mech. 850, 4682.10.1017/jfm.2018.425CrossRefGoogle Scholar
Hall, P. 2020 An instability mechanism for channel flows in the presence of wall roughness. J. Fluid Mech. 899, R2.10.1017/jfm.2020.493CrossRefGoogle Scholar
Hall, P. 2021 Long wavelength streamwise vortices caused by wall curvature or roughness. J. Engng Maths 128, 2.10.1007/s10665-021-10112-8CrossRefGoogle Scholar
Hall, P. & Horseman, N.J. 1991 The linear inviscid secondary instability of longitudinal vortex structures in boundary layers. J. Fluid Mech. 232, 357375.10.1017/S0022112091003725CrossRefGoogle Scholar
Hall, P. & Lakin, W.D. 1988 The fully nonlinear development of Görtler vortices in growing boundary layers. Proc. R. Soc. A415, 421444.Google Scholar
Hall, P. & Ozcakir, O. 2021 Poiseuille flow in rough pipes: linear instability induced by vortex–wave interactions. J. Fluid Mech. 913, A43.10.1017/jfm.2021.52CrossRefGoogle Scholar
Hall, P. & Sherwin, S. 2010 Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech. 661, 178205.10.1017/S0022112010002892CrossRefGoogle Scholar
Hall, P. & Smith, F.T. 1989 Tollmien–Schlichting/vortex interaction in boundary layers. Eur. J. Mech. B/Fluids 8, 179205.Google Scholar
Hall, P. & Smith, F.T. 1991 On strongly nonlinear vortex-wave interactions in boundary layer transition. J. Fluid Mech. 227, 641666.10.1017/S0022112091000289CrossRefGoogle Scholar
Kandlikar, S.G. 2008 Exploring roughness effect on laminar internal flow-are we ready for change? Nanoscale Microscale Thermophys. Engng 12, 6182.10.1080/15567260701866728CrossRefGoogle Scholar
Leib, S.J., Wundrow, D.W. & Goldstein, M.E. 1999 Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J. Fluid Mech. 380, 169203.10.1017/S0022112098003504CrossRefGoogle Scholar
Ligrani, P.M., Oliveira, M.M. & Blaskovich, T. 2003 Comparison of heat transfer augmentation techniques. AIAA J. 41 (3), 337362.10.2514/2.1964CrossRefGoogle Scholar
Loh, S.A. & Blackburn, H.M. 2011 Stability of steady flow through an axially corrugated pipe. Phys. Fluids 23, 111703.10.1063/1.3660522CrossRefGoogle Scholar
Luchini, P. 1996 Reynolds-number independent instability of the boundary layer over a flat surface. J. Fluid Mech. 327, 101115.10.1017/S0022112096008476CrossRefGoogle Scholar
Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289309.10.1017/S0022112099007259CrossRefGoogle Scholar
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.10.1017/S0022112090000829CrossRefGoogle Scholar
Neiland, V.Y. 1969 Toward a theory of separation of the laminar boundary layer in a supersonic stream. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 4, 3335.Google Scholar
Nishimura, K., Yoshino, T. & Kawamura, Y. 1987 Instability of flow in a sinusoidal wavy channel with narrow spacing. J. Chem. Engng Japan 20, 102104.10.1252/jcej.20.102CrossRefGoogle Scholar
Rozhko, S.B. & Ruban, A.I. 1987 Longitudinal-transverse interaction in a three-dimensional boundary layer. Fluid Dyn. 22, 362371.10.1007/BF01051915CrossRefGoogle Scholar
Ruban, A.I. 1984 On Tollmien–Schlichting wave generation by sound. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 5, 4452.Google Scholar
Saric, W.S., Carrillo, R.B.J. & Reibert, M.S. 1998 Leading-edge roughness as a transition control mechanism. AIAA Paper 1998–0781.10.2514/6.1998-781CrossRefGoogle Scholar
Smith, A.M.O. 1955 On the growth of Taylor–Görtler vortices along highly concave walls. Q. J. Math. 13, 230262.Google Scholar
Smith, F.T. 1979 On the non-parallel flow stability of the Blasius boundary layer. Proc. R. Soc. Lond. A 366, 91109.Google Scholar
Smith, F.T. 1982 On the high Reynolds number theory of laminar flows. J. Appl. Maths 28, 207281.10.1093/imamat/28.3.207CrossRefGoogle Scholar
Stewartson, K. & Williams, P.G. 1969 Self-induced separation. Proc. R. Soc. Lond. A 312, 181206.Google Scholar
Stuart, J.T. 1966 Double boundary layers in oscillatory viscous flows. J. Fluid Mech. 24, 673687.10.1017/S0022112066000910CrossRefGoogle Scholar
Taylor, G.I. 1923 Stability of a viscous fluid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 233, 289343.Google Scholar
Thomas, C., Mughal, S., Gipon, M., Ashworth, R. & Martinez-Cava, A. 2016 Stability of an infinite swept wing boundary layer with surface waviness. AIAA J. 54, 30243038.10.2514/1.J054755CrossRefGoogle Scholar
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93102.10.1017/S0022112001004189CrossRefGoogle Scholar
Wang, J., Gibson, J. & Waleffe, F. 2007 Lower branch states in shear flows: transition and control. Phys. Rev. Lett. 98, 204501.10.1103/PhysRevLett.98.204501CrossRefGoogle ScholarPubMed
Wie, Y.-S. & Malik, M.R. 1998 Effect of surface waviness on boundary-layer transition in two-dimensional flow. Comput. Fluids 27, 157181.10.1016/S0045-7930(97)00024-8CrossRefGoogle Scholar
Wu, X., Zhao, D. & Luo, J. 2011 Excitation of steady and unsteady Görtler vortices by free-stream vortical disturbances. J. Fluid Mech. 682, 66100.10.1017/jfm.2011.224CrossRefGoogle Scholar