Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-01T23:03:33.985Z Has data issue: false hasContentIssue false

Richtmyer–Meshkov instability with a rippled reshock

Published online by Cambridge University Press:  27 July 2023

Yumeng Zhang
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Yong Zhao
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Juchun Ding*
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Xisheng Luo
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
*
Email address for correspondence: djc@ustc.edu.cn

Abstract

The reshocked Richtmyer–Meshkov instability (RMI) is examined in three different configurations via shock-tube experiments: RMI at a single-mode interface with a planar reshock (configuration I); RMI at a flat interface with a sinusoidal reshock (configuration II); RMI at a single-mode interface with a sinusoidal reshock (configuration III). The sinusoidal reshock is created by an incident shock reflecting off a sine-shaped wall surface. For all three configurations, the initial conditions of the experiment are specially set such that the interface evolution is at the linear stage when the reshock arrives. It is found that the amplitude of the reshocked interface increases linearly with time for all three configurations. For configuration I, the post-reshock perturbation growth depends heavily on the pre-reshock amplitude and growth rate, which can be predicted by a modified Mikaelian model (Phys. Rev. A, vol. 31, 1985, pp. 410–419). For configuration II, velocity perturbation associated with the non-uniform rippled reshock plays an important role in the instability growth. For configuration III, the post-reshock instability growth is much quicker (lower) than in configuration I when the sinusoidal reshock is in phase (out of phase) with the interface. A major reason is that for the in-phase (anti-phase) case, the velocity perturbation gives rise to an instability growth with an identical (opposite) direction to the pressure perturbation. A linear theory is developed that takes velocity perturbation, pressure perturbation and pre-reshock growth rate into account, which gives a reasonable prediction of the growth of the reshocked RMI in configurations II and III.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andronov, V.A., Bakhrakh, S.M., Meshkov, E.E., Mokhov, V.N., Nikiforov, V.V., et al. 1976 Turbulent mixing at contact surface accelerated by shock waves. Zh. Eksp. Teor. Fiz. 71, 806811.Google Scholar
Andronov, V.A., Zhidov, I.G., Meskov, E.E., Nevmerzhitskii, N.V. & Yanilkin, Y.V. 1995 Computational and experimental studies of hydrodynamic instabilities and turbulent mixing: review of VNIIEF efforts. Summary Rep.CrossRefGoogle Scholar
Bates, J.W. 2004 Initial-value-problem solution for isolated rippled shock fronts in arbitrary fluid media. Phys. Rev. E 69 (5), 056313.CrossRefGoogle ScholarPubMed
Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34, 445468.CrossRefGoogle Scholar
Brouillette, M. & Sturtevant, B. 1989 Growth induced by multiple shock waves normally incident on plane gaseous interfaces. Physica D 37, 248263.CrossRefGoogle Scholar
Brouillette, M. & Sturtevant, B. 1994 Experiments on the Richtmyer–Meshkov instability: single-scale perturbations on a continuous interface. J. Fluid Mech. 263, 271292.CrossRefGoogle Scholar
Charakhch'An, A.A. 2000 Richtmyer–Meshkov instability of an interface between two media due to passage of two successive shocks. J. Appl. Mech. Tech. Phys. 41 (1), 2331.CrossRefGoogle Scholar
Dell, Z.R., Pandian, A., Bhowmick, A.K., Swisher, N.C., Stanic, M., Stellingwerf, R.F. & Abarzhi, S.I. 2017 Maximum initial growth-rate of strong-shock-driven Richtmyer–Meshkov instability. Phys. Plasmas 24, 090702.CrossRefGoogle Scholar
Dell, Z., Stellingwerf, R.F. & Abarzhi, S.I. 2015 Effect of initial perturbation amplitude on Richtmyer–Meshkov flows induced by strong shocks. Phys. Plasmas 22 (9), 092711.CrossRefGoogle Scholar
Dimonte, G. & Ramaprabhu, P. 2010 Simulations and model of the nonlinear Richtmyer–Meshkov instability. Phys. Fluids 22, 014104.CrossRefGoogle Scholar
Ding, J., Si, T., Chen, M., Zhai, Z., Lu, X. & Luo, X. 2017 On the interaction of a planar shock with a three-dimensional light gas cylinder. J. Fluid Mech. 828, 289317.CrossRefGoogle Scholar
Grinstein, F.F., Gowardhan, A.A. & Wachtor, A.J. 2011 Simulations of Richtmyer–Meshkov instabilities in planar shock-tube experiments. Phys. Fluids 23 (3), 2931.CrossRefGoogle Scholar
Guo, X., Cong, Z., Si, T. & Luo, X. 2022 Shock-tube studies of single- and quasi-single-mode perturbation growth in Richtmyer–Meshkov flows with reshock. J. Fluid Mech. 941, A65.CrossRefGoogle Scholar
Ishizaki, R., Nishihara, K., Sakagami, H. & Ueshima, Y. 1996 Instability of a contact surface driven by a nonuniform shock wave. Phys. Rev. E 53 (6), R5592.CrossRefGoogle ScholarPubMed
Jacobs, J.W., Krivets, V.V. & Tsiklashvili, V. 2013 Experiments on the Richtmyer–Meshkov instability with an imposed, random initial perturbation. Shock Waves 23, 407413.CrossRefGoogle Scholar
Kuranz, C.C., et al. 2018 How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants. Nat. Commun. 9, 1564.CrossRefGoogle ScholarPubMed
Leinov, E., Malamud, G., Elbaz, Y., Levin, L.A., Ben-Dor, G., Shvarts, D. & Sadot, O. 2009 Experimental and numerical investigation of the Richtmyer–Meshkov instability under re-shock conditions. J. Fluid Mech. 626, 449475.CrossRefGoogle Scholar
Li, J., Ding, J., Luo, X. & Zou, L. 2022 a Instability of a heavy gas layer induced by a cylindrical convergent shock. Phys. Fluids 34 (4), 042123.CrossRefGoogle Scholar
Li, J., Yan, R., Zhao, B., Zheng, J., Zhang, H. & Lu, X. 2022 b Mitigation of the ablative Rayleigh–Taylor instability by nonlocal electron heat transport. Matt. Radiat. Extremes 7 (5), 8.Google Scholar
Li, Y., Samtaney, R. & Wheatley, V. 2018 The Richtmyer–Meshkov instability of a double-layer interface in convergent geometry with magnetohydrodynamics. Matt. Radiat. Extremes 3 (4), 12.Google Scholar
Liao, S., Zhang, W., Chen, H., Zou, L., Liu, J. & Zheng, X. 2019 Atwood number effects on the instability of a uniform interface driven by a perturbed shock wave. Phys. Rev. E 99, 013103.CrossRefGoogle ScholarPubMed
Lindl, J., Landen, O., Edwards, J., Moses, E. & Team, N. 2014 Review of the national ignition campaign 2009–2012. Phys. Plasmas 21, 020501.CrossRefGoogle Scholar
Liu, L., Ding, J., Zhai, Z. & Luo, X. 2019 Richtmyer–Meshkov instability of a sinusoidal interface driven by a cylindrical shock. Shock Waves 29, 263271.CrossRefGoogle Scholar
Liu, L., Liang, Y., Ding, J., Liu, N. & Luo, X. 2018 An elaborate experiment on the single-mode Richtmyer–Meshkov instability. J. Fluid Mech. 853, R2.CrossRefGoogle Scholar
Lombardini, M. & Pullin, D.I. 2009 Startup process in the Richtmyer–Meshkov instability. Phys. Fluids 21 (4), 044104.CrossRefGoogle Scholar
Meshkov, E.E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101104.CrossRefGoogle Scholar
Meshkov, E.E. 2006 Studies of Hydrodynamic Instabilities in Laboratory Experiments (in Russian). FGYC-VNIIEF.Google Scholar
Meshkov, E.E. 2013 Some peculiar features of hydrodynamic instability development. Phil. Trans. R. Soc. A 371 (2003), 20120288.CrossRefGoogle ScholarPubMed
Meyer, K.A. & Blewett, P.J. 1972 Numerical investigation of the stability of a shock-accelerated interface between two fluids. Phys. Fluids 15, 753759.CrossRefGoogle Scholar
Mikaelian, K.O. 1985 Richtmyer–Meshkov instabilities in stratified fluids. Phys. Rev. A 31, 410419.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1989 Turbulent mixing generated by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Physica D 36, 343357.CrossRefGoogle Scholar
Mohaghar, M., Carter, J., Pathikonda, G. & Ranjan, D. 2019 The transition to turbulence in shock-driven mixing: effects of Mach number and initial conditions. J. Fluid Mech. 871, 595635.CrossRefGoogle Scholar
Murakami, M. & Nishi, D. 2017 Optimization of laser illumination configuration for directly driven inertial confinement fusion. Matt. Radiat. Extremes 2 (2), 14.Google Scholar
Niederhaus, J.H.J., Greenough, J.A., Oakley, J.G., Ranjan, D., Andeson, M.H. & Bonazza, R. 2008 A computational parameter study for the three-dimensional shock–bubble interaction. J. Fluid Mech. 594, 85124.CrossRefGoogle Scholar
Ranjan, D., Oakley, J. & Bonazza, R. 2011 Shock–bubble interactions. Annu. Rev. Fluid Mech. 43, 117140.CrossRefGoogle Scholar
Richtmyer, R.D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13 (2), 297319.CrossRefGoogle Scholar
Samtaney, R., Ray, J. & Zabusky, N.J. 1998 Baroclinic circulation generation on shock accelerated slow/fast gas interfaces. Phys. Fluids 10, 12171230.CrossRefGoogle Scholar
Samtaney, R. & Zabusky, N.J. 1994 Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 4578.CrossRefGoogle Scholar
Samulski, C., Srinivasan, B., Manuel, J.E., Masti, R., Sauppe, J.P. & Kline, J. 2022 Deceleration-stage Rayleigh–Taylor growth in a background magnetic field studied in cylindrical and Cartesian geometries. Matt. Radiat. Extremes 7 (2), 12.Google Scholar
Sohn, S.I. 2003 Simple potential-flow model of Rayleigh–Taylor and Richtmyer–Meshkov instabilities for all density ratios. Phys. Rev. E 67, 026301.CrossRefGoogle ScholarPubMed
Stanic, M., Stellingwerf, R.F., Cassibry, J.T. & Abarzhi, S.I. 2012 Scale coupling in Richtmyer–Meshkov flows induced by strong shocks. Phys. Plasmas 19 (8), 082706.CrossRefGoogle Scholar
Sun, M. & Takayama, K. 1999 Conservative smoothing on an adaptive quadrilateral grid. J. Comput. Phys. 150, 143180.CrossRefGoogle Scholar
Ukai, S., Balakrishnan, K. & Menon, S. 2011 Growth rate predictions of single- and multi-mode Richtmyer–Meshkov instability with reshock. Shock Waves 21, 533546.CrossRefGoogle Scholar
Vandenboomgaerde, M., Mügler, C. & Gauthier, S. 1998 Impulsive model for the Richtmyer–Meshkov instability. Phys. Rev. E 58 (2), 18741882.CrossRefGoogle Scholar
Vetter, M. & Sturtevant, B. 1995 Experiments on the Richtmyer–Meshkov instability of an air/SF$_6$ interface. Shock Waves 4, 247252.CrossRefGoogle Scholar
Wang, M., Si, T. & Luo, X. 2013 Generation of polygonal gas interfaces by soap film for Richtmyer–Meshkov instability study. Exp. Fluids 54, 1427.CrossRefGoogle Scholar
Wang, X., Yang, D., Wu, J. & Luo, X. 2015 Interaction of a weak shock wave with a discontinuous heavy-gas cylinder. Phys. Fluids 27 (6), 064104.CrossRefGoogle Scholar
Wouchuk, J.G. 2001 a Growth rate of the Richtmyer–Meshkov instability when a rarefaction is reflected. Phys. Plasmas 8 (6), 28902907.CrossRefGoogle Scholar
Wouchuk, J.G. 2001 b Growth rate of the linear Richtmyer–Meshkov instability when a shock is reflected. Phys. Rev. E 63, 056303.CrossRefGoogle ScholarPubMed
Wright, C.E. & Abarzhi, S.I. 2021 Effect of adiabatic index on Richtmyer–Meshkov flows induced by strong shocks. Phys. Fluids 33 (4), 046109.CrossRefGoogle Scholar
Yang, J., Kubota, T. & Zukoski, E.E. 1993 Application of shock-induced mixing to supersonic combustion. AIAA J. 31, 854862.CrossRefGoogle Scholar
Zabusky, N.J. 1999 Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh–Taylor and Richtmyer–Meshkov environments. Annu. Rev. Fluid Mech. 31, 495536.CrossRefGoogle Scholar
Zhai, Z., Si, T., Luo, X. & Yang, J. 2011 On the evolution of spherical gas interfaces accelerated by a planar shock wave. Phys. Fluids 23, 084104.CrossRefGoogle Scholar
Zhang, Q., Deng, S. & Guo, W. 2018 a Quantitative theory for the growth rate and amplitude of the compressible Richtmyer–Meshkov instability at all density ratios. Phys. Rev. Lett. 121, 174502.CrossRefGoogle ScholarPubMed
Zhang, Q. & Guo, W. 2016 Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios. J. Fluid Mech. 786, 4761.CrossRefGoogle Scholar
Zhang, Q. & Sohn, S.I. 1997 Nonlinear theory of unstable fluid mixing driven by shock wave. Phys. Fluids 9, 11061124.CrossRefGoogle Scholar
Zhang, W., Wu, Q., Zou, L., Zheng, X., Li, X., Luo, X. & Ding, J. 2018 b Mach number effect on the instability of a planar interface subjected to a rippled shock. Phys. Rev. E 98, 043105.CrossRefGoogle Scholar
Zhou, Y. 2017 a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720–722, 1136.Google Scholar
Zhou, Y. 2017 b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723–725, 1160.Google Scholar
Zoldi, C.A. 2002 A numerical and experimental study of a shock-accelerated heavy gas cylinder. PhD thesis, State University of New York at Stony Brook.CrossRefGoogle Scholar
Zou, L., Al-Marouf, M., Cheng, W., Samtaney, R. & Luo, X. 2019 Richtmyer–Meshkov instability of an unperturbed interface subjected to a diffracted convergent shock. J. Fluid Mech. 879, 448467.CrossRefGoogle Scholar
Zou, L., Liu, J., Liao, S., Zheng, X., Zhai, Z. & Luo, X. 2017 Richtmyer–Meshkov instability of a flat interface subjected to a rippled shock wave. Phys. Rev. E 95 (1), 013107.CrossRefGoogle ScholarPubMed