Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-16T23:35:06.109Z Has data issue: false hasContentIssue false

Sea water freezing modes in a natural convection system

Published online by Cambridge University Press:  11 April 2023

Yihong Du
Affiliation:
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of MoE, International Joint Laboratory on Low Carbon Clean Energy Innovation, and Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, PR China
Ziqi Wang
Affiliation:
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of MoE, International Joint Laboratory on Low Carbon Clean Energy Innovation, and Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, PR China
Linfeng Jiang
Affiliation:
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of MoE, International Joint Laboratory on Low Carbon Clean Energy Innovation, and Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, PR China
Enrico Calzavarini*
Affiliation:
Univ. Lille, Unité de Mécanique de Lille – J. Boussinesq (UML) ULR 7512, F-59000 Lille, France
Chao Sun*
Affiliation:
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of MoE, International Joint Laboratory on Low Carbon Clean Energy Innovation, and Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, PR China Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
*
Email addresses for correspondence: enrico.calzavarini@univ-lille.fr, chaosun@tsinghua.edu.cn
Email addresses for correspondence: enrico.calzavarini@univ-lille.fr, chaosun@tsinghua.edu.cn

Abstract

Sea ice is crucial in many natural processes and human activities. Understanding the dynamical couplings between the inception, growth and equilibrium of sea ice and the rich fluid mechanical processes occurring at its interface and interior is of relevance in many domains, ranging from geophysics to marine engineering. Here we investigate experimentally the complete freezing process of water with dissolved salt in a standard natural convection system, i.e. the prototypical Rayleigh–Bénard cell. Due to the presence of a mushy phase, the studied system is considerably more complex than the freezing of fresh water in the same conditions (Wang et al., Proc. Natl Acad. Sci. USA, vol. 118, issue 10, 2021, e2012870118). We measure the ice thickness and porosity at the dynamical equilibrium state for different initial salinities of the solution and temperature gaps across the cell. These observables are non-trivially related to the controlling parameters of the system as they depend on the heat transport mode across the cell. We identify in the experiments five out of the six possible modes of heat transport. We highlight the occurrence of brine convection through the mushy ice and of penetrative convection in stably stratified liquid underlying the ice. A one-dimensional multi-layer heat flux model built on the known scaling relations of global heat transport in natural convection systems in liquids and porous media is proposed. Given the measured porosity of the ice, it allows us to predict the corresponding ice thickness, in a unified framework.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Equally contributed authors.

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503.CrossRefGoogle Scholar
Anderson, D.M. & Guba, P. 2020 Convective phenomena in mushy layers. Annu. Rev. Fluid Mech. 52, 93119.CrossRefGoogle Scholar
de Andrés, C.R.A., Saarinen, S. & Uuskallio, A. 2018 Review of ice challenges and ice management in port areas. Coast. Engng Proc. 36, 7979.Google Scholar
Bodnar, R.J. 1993 Revised equation and table for determining the freezing point depression of H$_2$O–NaCl solutions. Geochim. Cosmochim. Acta 57 (3), 683684.CrossRefGoogle Scholar
Chase, M.W. Jr. 1998 Data reported in NIST standard reference database 69, June 2005 release: NIST chemistry webbook. J. Phys. Chem. Ref. Data 9, 11951.Google Scholar
Chen, C.F. 1995 Experimental study of convection in a mushy layer during directional solidification. J. Fluid Mech. 293, 8198.CrossRefGoogle Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (7), 125.CrossRefGoogle ScholarPubMed
Clark, P.U., Alley, R.B. & Pollard, D. 1999 Northern hemisphere ice-sheet influences on global climate change. Science 286 (5442), 11041111.CrossRefGoogle Scholar
Covello, V., Abba, A., Bonaventura, L., Della Rocca, A. & Valdettaro, L. 2016 A multiphase model for the numerical simulation of ice-formation in sea-water. In 7th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2016), pp. 750–771. National Technical University of Athens.CrossRefGoogle Scholar
Curry, J.A., Schramm, J.L. & Ebert, E.E. 1995 Sea ice-albedo climate feedback mechanism. J. Clim. 8 (2), 240247.Google Scholar
Driesner, T. 2007 The system H$_2$O–NaCl. Part II: Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 $^\circ$ C, 1 to 5000 bar, and 0 to 1 $X_{\rm NaCl}$. Geochim. Cosmochim. Acta 71 (20), 49024919.CrossRefGoogle Scholar
Esfahani, B.R., Hirata, S.C., Berti, S. & Calzavarini, E. 2018 Basal melting driven by turbulent thermal convection. Phys. Rev. Fluids 3 (5), 053501.CrossRefGoogle Scholar
Favier, B., Purseed, J. & Duchemin, L. 2019 Rayleigh–Bénard convection with a melting boundary. J. Fluid Mech. 858, 437473.CrossRefGoogle Scholar
Feltham, D.L., Untersteiner, N., Wettlaufer, J.S. & Worster, M.G. 2006 Sea ice is a mushy layer. Geophys. Res. Lett. 33 (14), L14501.CrossRefGoogle Scholar
Fukusako, S. 1990 Thermophysical properties of ice, snow, and sea ice. Intl J. Thermophys. 11 (2), 353372.CrossRefGoogle Scholar
Gebhart, B. & Mollendorf, J.C. 1977 A new density relation for pure and saline water. Deep-Sea Res. 24 (9), 831848.CrossRefGoogle Scholar
Gupta, V.P. & Joseph, D.D. 1973 Bounds for heat transport in a porous layer. J. Fluid Mech. 57 (3), 491514.CrossRefGoogle Scholar
Hall, D.L., Sterner, S.M. & Bodnar, R.J. 1988 Freezing point depression of NaCl–KCl–H$_2$O solutions. Econ. Geol. 83 (1), 197202.CrossRefGoogle Scholar
Hanna, E., et al. 2013 Ice-sheet mass balance and climate change. Nature 498 (7452), 5159.CrossRefGoogle ScholarPubMed
Ho, J. 2010 The implications of Arctic sea ice decline on shipping. Mar. Pol. 34 (3), 713715.CrossRefGoogle Scholar
Joughin, I., Alley, R.B. & Holland, D.M. 2012 Ice-sheet response to oceanic forcing. Science 338 (6111), 11721176.Google ScholarPubMed
Kawamura, T., Ishikawa, M., Takatsuka, T., Kojima, S. & Shirasawa, K. 2006 Measurements of permeability of sea ice. In Proceedings of the 18th IAHR International Symposium on Ice, pp. 105–112. International Association for Hydro-Environment Engineering and Research.Google Scholar
Kerr, R.C., Woods, A.W., Worster, M.G. & Huppert, H.E. 1990 Solidification of an alloy cooled from above. Part 1. Equilibrium growth. J. Fluid Mech. 216, 323342.CrossRefGoogle Scholar
Lohse, D. & Xia, K.Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.Google Scholar
Lyman, J. & Fleming, R.H. 1940 Composition of sea water. J. Mar. Res. 3 (2), 134146.Google Scholar
Mondal, M., Gayen, B., Griffiths, R.W. & Kerr, R.C. 2019 Ablation of sloping ice faces into polar seawater. J. Fluid Mech. 863, 545571.Google Scholar
Notz, D. 2005 Thermodynamic and fluid-dynamical processes in sea ice. PhD thesis, University of Cambridge, Cambridge.Google Scholar
Obbard, R.W., Sadri, S., Wong, Y.Q., Khitun, A.A., Baker, I. & Thompson, R.C. 2014 Global warming releases microplastic legacy frozen in Arctic sea ice. Earth's Future 2 (6), 315320.Google Scholar
Pal, L., Joyce, M.K. & Fleming, P.D. 2006 A simple method for calculation of the permeability coefficient of porous media. TAPPI J. 5 (9), 10.Google Scholar
Pawlowicz, R. 2015 The absolute salinity of seawater diluted by riverwater. Deep-Sea Res. 101, 7179.CrossRefGoogle Scholar
Peeken, I., Primpke, S., Beyer, B., Gütermann, J., Katlein, C., Krumpen, T., Bergmann, M., Hehemann, L. & Gerdts, G. 2018 Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 9 (1), 112.Google ScholarPubMed
Peppin, S.S.L., Huppert, H.E. & Worster, M.G. 2008 Steady-state solidification of aqueous ammonium chloride. J. Fluid Mech. 599, 465476.CrossRefGoogle Scholar
Perovich, D.K., Grenfell, T.C., Light, B. & Hobbs, P.V. 2002 Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res. 107 (C10), 8044.CrossRefGoogle Scholar
Petrich, C., Langhorne, P.J. & Sun, Z.F. 2006 Modelling the interrelationships between permeability, effective porosity and total porosity in sea ice. Cold Reg. Sci. Technol. 44 (2), 131144.CrossRefGoogle Scholar
Polashenski, C., Golden, K.M., Perovich, D.K., Skyllingstad, E., Arnsten, A., Stwertka, C. & Wright, N. 2017 Percolation blockage: a process that enables melt pond formation on first year Arctic sea ice. J. Geophys. Res. Oceans 122 (1), 413440.CrossRefGoogle Scholar
Post, E., Bhatt, U.S., Bitz, C.M., Brodie, J.F., Fulton, T.L., Hebblewhite, M., Kerby, J., Kutz, S.J., Stirling, I. & Walker, D.A. 2013 Ecological consequences of sea-ice decline. Science 341 (6145), 519524.CrossRefGoogle ScholarPubMed
Rae, J.G.L., Hewitt, H.T., Keen, A.B., Ridley, J.K., West, A.E., Harris, C.M., Hunke, E.C. & Walters, D.N. 2015 Development of the global sea ice 6.0 CICE configuration for the Met Office global coupled model. Geosci. Model Develop. 8 (7), 22212230.CrossRefGoogle Scholar
Ramires, M.L.V., Nieto de Castro, C.A, Nagasaka, Y., Nagashima, A., Assael, M.J. & Wakeham, W.A. 1995 Standard reference data for the thermal conductivity of water. J. Phys. Chem. Ref. Data 24 (3), 13771381.CrossRefGoogle Scholar
Ravichandran, S., Toppaladoddi, S. & Wettlaufer, J.S. 2022 The combined effects of buoyancy, rotation, and shear on phase boundary evolution. J. Fluid Mech. 941, A39.CrossRefGoogle Scholar
Rosevear, M.G., Gayen, B. & Galton-Fenzi, B.K. 2021 The role of double-diffusive convection in basal melting of Antarctic ice shelves. Proc. Natl Acad. Sci. USA 118 (6), e2007541118.CrossRefGoogle ScholarPubMed
Rousset, C., et al. 2015 The Louvain-la-Neuve sea ice model LIM3.6: global and regional capabilities. Geosci. Model Develop. 8 (10), 29913005.CrossRefGoogle Scholar
Scagliarini, A., Calzavarini, E., Mansutti, D. & Toschi, F. 2020 Modelling sea ice and melt ponds evolution: sensitivity to microscale heat transfer mechanisms. In Mathematical Approach to Climate Change and its Impacts (ed. P. Cannarsa, D. Mansutti & A. Provenzale), pp. 179–198. Springer.CrossRefGoogle Scholar
Simion, A.I., Grigoraş, C.G., Roşu, A.M. & Gavrilă, L. 2015 Mathematical modelling of density and viscosity of NaCl aqueous solutions. J. Agroaliment. Process. Technol. 21 (1), 4152.Google Scholar
Stevens, C., Hulbe, C., Brewer, M., Stewart, C., Robinson, N., Ohneiser, C. & Jendersie, S. 2020 Ocean mixing and heat transport processes observed under the Ross ice shelf control its basal melting. Proc. Natl Acad. Sci. USA 117 (29), 1679916804.CrossRefGoogle ScholarPubMed
Straneo, F. & Heimbach, P. 2013 North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature 504 (7478), 3643.CrossRefGoogle ScholarPubMed
Sugawara, M. & Irvine, T.F. 2000 The effect of concentration gradient on the melting of a horizontal ice plate from above. Intl J. Heat Mass Transfer 43 (9), 15911601.CrossRefGoogle Scholar
Townsend, A.A. 1964 Natural convection in water over an ice surface. Q. J. R. Meteorol. Soc. 90 (385), 248259.CrossRefGoogle Scholar
Wadhams, P. & Munk, W. 2004 Ocean freshening, sea level rising, sea ice melting. Geophys. Res. Lett. 31 (11), L11311.CrossRefGoogle Scholar
Wang, Z., Calzavarini, E. & Sun, C. 2021 b Equilibrium states of the ice-water front in a differentially heated rectangular cell. Europhys. Lett. 135 (5), 54001.CrossRefGoogle Scholar
Wang, Z., Calzavarini, E., Sun, C. & Toschi, F. 2021 c How the growth of ice depends on the fluid dynamics underneath. Proc. Natl Acad. Sci. USA 118 (10), e2012870118.CrossRefGoogle ScholarPubMed
Wang, Z., Jiang, L., Du, Y., Sun, C. & Calzavarini, E. 2021 d Ice front shaping by upward convective current. Phys. Rev. Fluids 6 (9), L091501.CrossRefGoogle Scholar
Wang, Q., Reiter, P., Lohse, D. & Shishkina, O. 2021 a Universal properties of penetrative turbulent Rayleigh–Bénard convection. Phys. Rev. Fluids 6 (6), 063502.CrossRefGoogle Scholar
Wells, A.J., Hitchen, J.R. & Parkinson, J.R.G. 2019 Mushy-layer growth and convection, with application to sea ice. Phil. Trans. R. Soc. A 377, 20180165.CrossRefGoogle ScholarPubMed
Wettlaufer, J.S., Worster, M.G. & Huppert, H.E. 1997 Natural convection during solidification of an alloy from above with application to the evolution of sea ice. J. Fluid Mech. 344, 291316.CrossRefGoogle Scholar
Worster, M.G. 1997 Convection in mushy layers. Annu. Rev. Fluid Mech. 29 (1), 91122.CrossRefGoogle Scholar
Worster, M.G. & Rees Jones, D.W. 2015 Sea-ice thermodynamics and brine drainage. Phil. Trans. R. Soc. A 373, 20140166.CrossRefGoogle ScholarPubMed
Worster, M.G. & Wettlaufer, J.S. 1997 Natural convection, solute trapping, and channel formation during solidification of saltwater. J. Phys. Chem. B 101 (32), 61326136.CrossRefGoogle Scholar
Yang, R., Chong, K.L., Liu, H.R., Verzicco, R. & Lohse, D. 2022 Abrupt transition from slow to fast melting of ice. Phys. Rev. Fluids 7, 083503.CrossRefGoogle Scholar
Yang, R., Howland, C.J., Liu, H., Verzicco, R. & Lohse, D. 2023 a Ice melting in salty water: layering and non-monotonic dependence on the mean salinity. arXiv:2302.02357.Google Scholar
Yang, R., Howland, C.J., Liu, H., Verzicco, R. & Lohse, D. 2023 b Morphology evolution of a melting solid layer above its melt heated from below. J. Fluid Mech. 956, A23.CrossRefGoogle Scholar
Yusufova, V.D., Pepinov, R.I., Nikolaev, V.A. & Guseinov, G.M. 1975 Thermal conductivity of aqueous solutions of NaCl. J. Engng Phys. 29 (4), 12251229.CrossRefGoogle Scholar
Supplementary material: PDF

Du et al. supplementary material

Du et al. supplementary material

Download Du et al. supplementary material(PDF)
PDF 51.9 KB