Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-17T09:32:51.735Z Has data issue: false hasContentIssue false

Wettability effect on displacement in disordered media under preferential flow conditions

Published online by Cambridge University Press:  17 November 2023

Wenhai Lei
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Wenbo Gong
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Moran Wang*
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
*
Email address for correspondence: mrwang@tsinghua.edu.cn

Abstract

Preferential flow in a porous medium is commonly encountered in many practical applications. Our previous studies have discovered the preferential flow-induced non-monotonic wettability effect on displacement (J. Fluid Mech, vol. 942, 2022a, R5), but whether this non-monotonic rule is consistent for different disordered media and the impact of the interplay between the disorder and wettability under preferential flow conditions is still not well understood. Here, we combine microfluidic experiments, pore-scale simulations and theoretical analysis to study the impact of the disorder on the invading process where wettability varies from strongly water wet to strongly oil wet. Even though the strongly disordered matrix varies to a uniform state, the generality of the preferential flow-induced non-monotonic wettability effect is still proved. However, the previous pore-scale dynamics based on the strongly disordered matrix cannot explain the invading behaviour in the uniform matrix under preferential flow conditions. New mechanisms for the uniform matrix are further investigated by pore-scale modelling, which indicates that the balance of microscopic imbibition ability and the macroscopic interfacial stability dominate the invading process. We derive a theoretical model to describe the wettability effect and predict the optimal contact angle, which fits well with experimental and simulation results. Our work extends the understanding of the impact of preferential flow conditions on the wettability effect and is also of practical significance for engineering applications, such as geological CO2 sequestration, enhanced hydrocarbon recovery, soil wetting, liquid-infused material fabrication and microfluidic device design.

Type
JFM Papers
Copyright
© Tsinghua University, 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Futaisi, A. & Patzek, T.W. 2003 Impact of wettability alteration on two-phase flow characteristics of sandstones: a quasi-static description. Water Resour. Res. 39, 1042.CrossRefGoogle Scholar
Anbari, A., Chien, H.T., Datta, S.S., Deng, W., Weitz, D.A. & Fan, J. 2018 Microfluidic model porous media: fabrication and applications. Small 14, 1703575.CrossRefGoogle ScholarPubMed
Bakhshian, S., Rabbani, H.S., Hosseini, S.A. & Shokri, N. 2020 New insights into complex interactions between heterogeneity and wettability influencing two-phase flow in porous media. Geophys. Res. Lett. 47, e2020GL088187.CrossRefGoogle Scholar
Blunt, M.J. 2001 Flow in porous media – pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci. 6 (3), 197207.CrossRefGoogle Scholar
Blunt, M.J. 2017 Multiphase Flow in Permeable Media: A Pore-Scale Perspective. Cambridge University Press.Google Scholar
Cha, L., Xie, C., Feng, Q. & Balhoff, M. 2021 Geometric criteria for the snap-off of a non-wetting droplet in pore-throat channels with rectangular cross-sections. Water Resour. Res. 57 (7), e2020WR029476.CrossRefGoogle Scholar
Chomsurin, C. & Werth, C.J. 2003 Analysis of pore-scale nonaqueous phase liquid dissolution in etched silicon pore networks. Water Resour. Res. 39 (9), 1265.CrossRefGoogle Scholar
Cieplak, M. & Robbins, M.O. 1988 Dynamical transition in quasistatic fluid invasion in porous media. Phys. Rev. Lett. 60 (20), 20422045.CrossRefGoogle ScholarPubMed
Cieplak, M. & Robbins, M.O. 1990 Influence of contact angle on quasistatic fluid invasion of porous media. Phys. Rev. B 41 (16), 1150811521.CrossRefGoogle ScholarPubMed
Cybulski, O., Garstecki, P. & Grzybowski, B.A. 2019 Oscillating droplet trains in microfluidic networks and their suppression in blood flow. Nat. Phys. 15 (7), 706713.CrossRefGoogle Scholar
Edery, Y., Berg, S. & Weitz, D. 2018 Surfactant variations in porous media localize capillary instabilities during Haines jumps. Phys. Rev. Lett. 120 (2), 028005.CrossRefGoogle ScholarPubMed
Fatt, I. 1956 The network model of porous media. Trans AIME 207 (1), 144181.CrossRefGoogle Scholar
Foroughi, S., Bijeljic, B., Lin, Q., Raeini, A.Q. & Blunt, M.J. 2020 Pore-by-pore modeling, analysis, and prediction of two-phase flow in mixed-wet rocks. Phys. Rev. E 102 (2), 023302.CrossRefGoogle ScholarPubMed
Garfi, G., John, C.M., Rücker, M., Lin, Q., Spurin, C., Berg, S. & Krevor, S. 2022 Determination of the spatial distribution of wetting in the pore networks of rocks. J. Colloid Interface Sci. 613, 786795.CrossRefGoogle ScholarPubMed
Gauglitz, P.A. & Radke, C.J. 1986 The role of wettability in the breakup of liquid films inside constricted capillaries. LBNL Report. LBL-21804. Lawrence Berkeley National Laboratory.Google Scholar
Grate, J.W., Warner, M.G., Pittman, J.W., Dehoff, K.J., Wietsma, T.W., Zhang, C. & Oostrom, M. 2013 Silane modification of glass and silica surfaces to obtain equally oil-wet surfaces in glass-covered silicon micromodel applications. Water Resour. Res. 49 (8), 47244729.CrossRefGoogle Scholar
Green, D.W. & Willhite, G.P. 1998 Enhanced Oil Recovery. SPE Textbook Series, vol. 6. Society of Petroleum Engineers.Google Scholar
Gu, Q., Liu, H. & Wu, L. 2021 Preferential imbibition in a dual-permeability pore network. J. Fluid Mech. 915, A138.CrossRefGoogle Scholar
Guo, F. & Aryana, S.A. 2019 An experimental investigation of flow regimes in imbibition and drainage using a microfluidic platform. Energies 12 (7).Google Scholar
Holtzman, R. 2016 Effects of pore-scale disorder on fluid displacement in partially-wettable porous media. Sci. Rep. 6 (1), 36221.CrossRefGoogle ScholarPubMed
Holtzman, R. & Segre, E. 2015 Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling. Phys. Rev. Lett. 115 (16), 164501.CrossRefGoogle ScholarPubMed
Hu, R., Lan, T., Wei, G.-J. & Chen, Y.-F. 2019 Phase diagram of quasi-static immiscible displacement in disordered porous media. J. Fluid Mech. 875, 448475.CrossRefGoogle Scholar
Hu, R., Wan, J., Kim, Y. & Tokunaga, T.K. 2017 Wettability impact on supercritical CO2 capillary trapping: pore-scale visualization and quantification. Water Resour. Res. 53 (8), 63776394.CrossRefGoogle Scholar
Huppert, H.E. & Neufeld, J.A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46 (1), 255272.CrossRefGoogle Scholar
Joekar Niasar, V., Hassanizadeh, S.M., Pyrak-Nolte, L.J. & Berentsen, C. 2009 Simulating drainage and imbibition experiments in a high-porosity micromodel using an unstructured pore network model. Water Resour. Res. 45 (2).CrossRefGoogle Scholar
Joekar-Niasar, V. & Majid Hassanizadeh, S. 2011 Effect of fluids properties on non-equilibrium capillarity effects: dynamic pore-network modeling. Intl J. Multiphase Flow 37 (2), 198214.CrossRefGoogle Scholar
Jung, M., Brinkmann, M., Seemann, R., Hiller, T., Sanchez de la Lama, M. & Herminghaus, S. 2016 Wettability controls slow immiscible displacement through local interfacial instabilities. Phys. Rev. Fluids 1 (7), 074202.CrossRefGoogle Scholar
Krummel, A.T., Datta, S.S., Münster, S. & Weitz, D.A. 2013 Visualizing multiphase flow and trapped fluid configurations in a model three-dimensional porous medium. AIChE J. 59 (3), 10221029.CrossRefGoogle Scholar
Lei, W., Liu, T., Xie, C., Yang, H., Wu, T. & Wang, M. 2020 Enhanced oil recovery mechanism and recovery performance of micro-gel particle suspensions by microfluidic experiments. Energy Sci. Eng. 8 (4), 986998.CrossRefGoogle Scholar
Lei, W., Lu, X., Liu, F. & Wang, M. 2022 a Non-monotonic wettability effects on displacement in heterogeneous porous media. J. Fluid Mech. 942, R5.CrossRefGoogle Scholar
Lei, W., Lu, X. & Wang, M. 2023 Multiphase displacement manipulated by micro/nanoparticle suspensions in porous media via microfluidic experiments: From interface science to multiphase flow patterns. Adv. Colloid Interface Sci. 311, 102826.CrossRefGoogle ScholarPubMed
Lei, W., Lu, X., Wu, T., Yang, H. & Wang, M. 2022 b High-performance displacement by microgel-in-oil suspension in heterogeneous porous media: microscale visualization and quantification. J. Colloid Interface Sci 627, 848861.CrossRefGoogle ScholarPubMed
Lenormand, R., Touboul, E. & Zarcone, C. 1988 Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189 (189), 165187.CrossRefGoogle Scholar
Lin, Q., Bijeljic, B., Berg, S., Pini, R., Blunt, M.J. & Krevor, S. 2019 Minimal surfaces in porous media: Pore-scale imaging of multiphase flow in an altered-wettability Bentheimer sandstone. Phys. Rev. E 99 (6), 063105.CrossRefGoogle Scholar
Mayer, R.P. & Stowe, R.A. 1965 Mercury porosimetry – breakthrough pressure for penetration between packed spheres. J. Colloid Sci. 20 (8), 893911.CrossRefGoogle Scholar
Pak, T., Fernando de Lima Luz, L. Jr., Tosco, T., Costa, G.S.R., Rosa, P.R.R. & Archilha, N.L. 2020 Pore-scale investigation of the use of reactive nanoparticles for in situ remediation of contaminated groundwater source. Proc. Natl Acad. Sci. USA 117 (24), 13366.CrossRefGoogle ScholarPubMed
Patzek, T.W. 2001 Verification of a complete pore network simulator of drainage and imbibition. SPE J. 6 (2), 144156.CrossRefGoogle Scholar
Primkulov, B.K., Pahlavan, A.A., Fu, X., Zhao, B., Macminn, C.W. & Juanes, R. 2019 Signatures of fluid–fluid displacement in porous media: wettability, patterns and pressures. J. Fluid Mech. 875, R4.CrossRefGoogle Scholar
Primkulov, B.K., Pahlavan, A.A., Fu, X., Zhao, B., Macminn, C.W. & Juanes, R. 2021 Wettability and Lenormand's diagram. J. Fluid Mech. 923, A34.CrossRefGoogle Scholar
Primkulov, B.K., Talman, S., Khaleghi, K., Rangriz Shokri, A., Chalaturnyk, R., Zhao, B., Macminn, C.W. & Juanes, R. 2018 Quasistatic fluid-fluid displacement in porous media: invasion-percolation through a wetting transition. Phys. Rev. Fluids 3 (10), 104001.CrossRefGoogle Scholar
Princen, H.M. 1969 Capillary phenomena in assemblies of parallel cylinders. I. Capillary rise between two cylinders. J. Colloid Interface Sci. 30 (1), 6975.CrossRefGoogle Scholar
Qin, C.-Z. & Van Brummelen, H. 2019 A dynamic pore-network model for spontaneous imbibition in porous media. Adv. Water Resour. 133, 103420.CrossRefGoogle Scholar
Sackmann, E.K., Fulton, A.L. & Beebe, D.J. 2014 The present and future role of microfluidics in biomedical research. Nature 507 (7491), 181189.CrossRefGoogle ScholarPubMed
Singh, A., Regenauer-Lieb, K., Walsh, S.D.C., Armstrong, R.T., Van Griethuysen, J.J.M. & Mostaghimi, P. 2020 On representative elementary volumes of grayscale micro-CT images of porous media. Geophys. Res. Lett. 47 (15), e2020GL088594.CrossRefGoogle Scholar
Singh, K., Jung, M., Brinkmann, M. & Seemann, R. 2019 Capillary-dominated fluid displacement in porous media. Annu. Rev. Fluid Mech. 51 (1), 429449.CrossRefGoogle Scholar
Singh, K., Scholl, H., Brinkmann, M., Michiel, M.D., Scheel, M., Herminghaus, S. & Seemann, R. 2017 The role of local instabilities in fluid invasion into permeable media. Sci. Rep. 7 (1), 444.CrossRefGoogle ScholarPubMed
Sun, C., Mcclure, J.E., Mostaghimi, P., Herring, A.L., Berg, S. & Armstrong, R.T. 2020 Probing effective wetting in subsurface systems. Geophys. Res. Lett. 47 (5), e2019GL086151.CrossRefGoogle Scholar
Thompson, K.E. 2002 Pore-scale modeling of fluid transport in disordered fibrous materials. AICHE J. 48 (7), 13691389.CrossRefGoogle Scholar
Trojer, M., Szulczewski, M.L. & Juanes, R. 2015 Stabilizing fluid–fluid displacements in porous media through wettability alteration. Phys. Rev. Appl. 3 (5), 054008.CrossRefGoogle Scholar
Unsal, E., Mason, G., Morrow, N.R. & Ruth, D.W. 2009 Bubble snap-off and capillary-back pressure during counter-current spontaneous imbibition into model pores. Langmuir 25 (6), 33873395.CrossRefGoogle ScholarPubMed
Valvatne, P.H. & Blunt, M.J. 2004 Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res. 40, 7.CrossRefGoogle Scholar
Wang, M. & Pan, N. 2008 Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Engng R Rep. 63 (1), 130.CrossRefGoogle Scholar
Wang, Z., Chauhan, K., Pereira, J.-M. & Gan, Y. 2019 Disorder characterization of porous media and its effect on fluid displacement. Phys. Rev. Fluids 4 (3), 034305.CrossRefGoogle Scholar
Wang, Z., Pereira, J.-M. & Gan, Y. 2020 Effect of wetting transition during multiphase displacement in porous media. Langmuir 36 (9), 24492458.CrossRefGoogle ScholarPubMed
Wolf, F.G., Siebert, D.N. & Surmas, R. 2020 Influence of the wettability on the residual fluid saturation for homogeneous and heterogeneous porous systems. Phys. Fluids 32 (5), 052008.CrossRefGoogle Scholar
Xie, C., Lei, W., Balhoff, M.T., Wang, M. & Chen, S. 2021 Self-adaptive preferential flow control using displacing fluid with dispersed polymers in heterogeneous porous media. J. Fluid Mech. 906, A10.CrossRefGoogle Scholar
Xie, C., Lei, W. & Wang, M. 2018 Lattice Boltzmann model for three-phase viscoelastic fluid flow. Phys. Rev. E 97 (2), 023312.CrossRefGoogle ScholarPubMed
Yasuga, H., et al. 2021 Fluid interfacial energy drives the emergence of three-dimensional periodic structures in micropillar scaffolds. Nat. Phys. 17, 794800.CrossRefGoogle Scholar
Zhang, C., Oostrom, M., Wietsma, T.W., Grate, J.W. & Warner, M.G. 2011 Influence of viscous and capillary forces on immiscible fluid displacement: pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy Fuels 25 (8), 34933505.CrossRefGoogle Scholar
Zhao, B., Macminn, C.W. & Juanes, R. 2016 Wettability control on multiphase flow in patterned microfluidics. Proc. Natl Acad. Sci. USA 113 (37), 1025110256.CrossRefGoogle ScholarPubMed
Zheng, J., Lei, W., Ju, Y. & Wang, M. 2021 Investigation of spontaneous imbibition behavior in a 3D pore space under reservoir condition by lattice Boltzmann method. J. Geophys. Res. 126 (6), e2021JB021987.CrossRefGoogle Scholar