Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-17T21:27:14.820Z Has data issue: false hasContentIssue false

Inhibition of Site I mitochondrial electron transport by an extract of the seeds of Millettia thonningii: a potential mechanism for the plant's molluscicidal and schistosome larvicidal activity

Published online by Cambridge University Press:  12 April 2024

J.R.A. Lyddiard
Affiliation:
Infection and Immunity Research Group, Division of Life Sciences, King's College London, University of London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NN, UK
P.J. Whitfield*
Affiliation:
Infection and Immunity Research Group, Division of Life Sciences, King's College London, University of London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NN, UK
*
*Fax: 020 7848 4500 E-mail: phil.whitfield@kcl.ac.uk

Abstract

A dichloromethane extract of the seeds of Millettia thonningii (Leguminosae) which contains a mixture of isoflavonoids (predominately robustic acid, alpinumisoflavone and dimethylalpinumisoflavone) is known to have larvicidal activity towards the miracidia and cercariae of schistosomes and to possess significant molluscicidal activity. The present investigation has assayed the effects of this extract on the electron transport systems of isolated rat liver mitochondria. The extract was found to inhibit mitochondrial electron transport at Site I (NADH dehydrogenase) at concentrations of 30–159 mg l-1. Although the extract is not as potent an inhibitor at Site I as rotenone, a known inhibitor of NADH dehydrogenase, such observations could explain the molluscicidal and schistosomicidal activity of dichloromethane extracts of the seeds of M. thonningii.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, P., Thyssen, J. & Lorke, D. (1983) The biology and toxicology of molluscicides: Bayluscide. Pharmacology and Therapeutics 19, 245295.CrossRefGoogle Scholar
Bois, R. & Estabrook, R.W. (1969) Nonheme iron protein as a possible site of rotenone inhibition of mitochondrial NADH dehydrogenase. Archives of Biochemistry and Biophysics 129, 362369.CrossRefGoogle ScholarPubMed
Burgos, J. & Redfearn, E.R. (1965) The inhibition of mitochondrial reduced nicotinamide adenine dinucleotide oxidation by rotenoids. Biochimica et Biophysica Acta 110, 475483.CrossRefGoogle Scholar
Colleoni, M., Costa, B., Gori, E. & Santagostino, A. (1996) Biochemical characterization of the effects of the benzodiazepine, midazolam, on mitochondrial electron transfer. Pharmacology and Toxicology 78, 6976.CrossRefGoogle ScholarPubMed
Duncan, J. & Mott, K.E. (1987) The biochemical and physiological basis of the mode of action of molluscicides Plant molluscicides 2744. in Mott, K.E. (Ed.) Plant molluscicides. New York, John Wiley and Sons Ltd.Google Scholar
Ernster, L., Dallner, G. & Azzone, G.F. (1963) Differential effect of rotenone and amytal on mitochondrial electron and energy transfer. Journal of Biological Chemistry 238, 11241131.CrossRefGoogle Scholar
Evans, N.A., Whitfield, P.J., Squire, B.J., Fellows, L.E., Evans, S.V. & Millot, S.M. (1986) Molluscicidal activity in the seeds of Millettia thonningii (Leguminosae: Papilionideae). Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 451453.CrossRefGoogle Scholar
Furushima, R., Takamiya, S., Okochi, I.V., Kita, K., Aoki, T. & Oya, H. (1991) A comparative study of the effects of phebrol on the respiratory chains of rat liver, Biomphalaria glabrata and Oncomelania nosophora . Comparative Biochemistry and Physiology 99, 191199.Google ScholarPubMed
Greiff, D., Myers, M. & Privitera, C.A. (1961) The effects of glycerol, freezing and storage at low temperature, and drying by vacuum sublimation on oxidative phosphorylation by mitochondrial suspensions. Biochimica et Biophysica Acta 50, 233242.CrossRefGoogle ScholarPubMed
Horgan, D.J. & Singer, T.P. (1968) Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. Journal of Biological Chemistry 243, 834843.CrossRefGoogle ScholarPubMed
Khalid, S.A. & Waterman, P.G. (1983) Thonningine-A and thonningine-B: two 3-phenylcoumarins from the seeds of Millettia thonningii . Phytochemistry 22, 10011003.CrossRefGoogle Scholar
Kloos, H. & McCullough, F.S. (1982) Plant molluscicides. Planta Medica 46, 195209.CrossRefGoogle ScholarPubMed
Lindahl, P.E. & Öberg, K.E. (1961) The effects of rotenone on respiration and its point of attack. Experimental Cell Research 23, 228237.CrossRefGoogle ScholarPubMed
Lusena, C.V. (1965) Release of enzymes from rat liver mitochondria by freezing. Canadian Journal of Biochemistry 43, 17871798.CrossRefGoogle ScholarPubMed
PhD Thesis Lyddiard, J.R.A. (1997) Studies on the mode of action of plant allelochemicals of relevance in schistosomiasis control.Google Scholar
Lyddiard, J.R.A., Bartlett, A., Gray, B. & Whitfield, P.J. (1998) The use of video-imaging to assess the sub-lethal impact of plant secondary compounds on Schistosoma mansoni miracidia. Journal of Helminthology 72, 237241.CrossRefGoogle ScholarPubMed
Olivares, E.M., Lwande, W., Monache, F.D. & Bettolo, G.B.M. (1982) A pyrano-isoflavone from the seeds of Millettia thonningii . Phytochemistry 21, 17631765.CrossRefGoogle Scholar
Pecci, L., Montefoschi, G., Fontana, M. & Cavallini, D. (1994) Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level. Biochemical and Biophysical Research Communications 199, 755760.CrossRefGoogle ScholarPubMed
Perrett, S. (1994) Studies on some antiparasitic secondary compounds from traditional medicinal plants,PhD Thesis, University of London.Google Scholar
Perrett, S., Whitfield, P.J., Bartlett, A. & Sanderson, L. (1994) Attenuation of Schistosoma mansoni cercariae with a molluscicide derived from Millettia thonningii . Parasitology 109, 559563.CrossRefGoogle ScholarPubMed
Rickwood, D., Wilson, M.T., & Darley-Usmar, V.M. (1987) Isolation and characteristics of intact mitochondria. pp. 518 in Darley-Usmar, V.M., Rickwood, D. & Wilson, M.T. (Eds) Mitochondria – a practical approach. Practical approach series. Oxford, IRL Press.Google Scholar
Shepard, H.H. (1951) The chemistry and action of insecticides. New York, McGraw-Hill Book Company Inc.Google Scholar
Squire, B.J., Pilcher, M.W., Whitfield, P.J., El-Banhaway, M.A. & Rashed, R.M.A. (1989) Fish toxicity of the molluscicidal seeds of Millettia thonningii (Leguminosae: Papilionideae): impact on Tilapia nilotica/aurea hybrids and Ctenopharyngodon idella . International Journal of Environmental Studies 203, 505509.Google Scholar
Squire, B.J. & Whitfield, P.J. (1989) Millettia thonningii: a rapid knockdown cercaricide for schistosome cercariae. Phytotherapy Research 3, 112114.CrossRefGoogle Scholar
Tang, S.S.H. (1994) Studies on molluscicidal compounds from Phytolacca dodecandra (Endod) and Millettia thonningii. PhD thesis, University of London.Google Scholar
Tang, S.S.H., Whitfield, P.J. & Perrett, S. (1995) Activity of the molluscicidal plant Millettia thonningii (Leguminosae) towards Biomphalaria glabrata eggs. Journal of Parasitology 81, 833835.CrossRefGoogle Scholar