Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-02T01:40:05.780Z Has data issue: false hasContentIssue false

Conditions inducing reliable transient gratings of a LaCoO3 thin film using transient grating technique

Published online by Cambridge University Press:  01 November 2004

Yoshiaki Takata
Affiliation:
National Institute for Materials Science, Tsukuba-shi 305-0044, Japan
Get access

Abstract

First, a grating decay rate and a thermal diffusion rate of the transient gratings are determined out of the energy-time trace observed by using a transient grating technique with 266-nm laser pulse inducing transient gratings in a LaCoO3 thin film. Second, the grating models aimed at studying two different thermal diffusion phenomena in contrast with the previous paper are described. The difference between both phenomena is attributable to the volume of photon scattering to characterize induced transient gratings. It is concluded that a reliable energy-time trace is observed when the transient gratings with a thickness smaller than a film are induced on the very surface of a thin film sample.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Eichler, H., Salje, G. and Stahl, H.: Thermal diffusion measurements using spatially periodic temperature distributions induced by laser light. J. Appl. Phys. 44, 5383 (1973).CrossRefGoogle Scholar
2Eichler, H.J., Guenter, P. and Pohl, D.W.: Laser-Induced Dynamic Gratings, Springer Series on Optical Science 50 (Springer-Verlag, Berlin, 1986).CrossRefGoogle Scholar
3Sawada, T. and Harata, A.: Transient reflecting grating for sub-surface analysis. Appl. Phys. A 61, 263 (1995).CrossRefGoogle Scholar
4Gedik, H., Orenstein, J., Liang, R., Bonn, D.A. and Hardy, W.N.: Diffusion of nonequilibrium quasi-particles in a cuprate superconductor. Science 300, 1410 (2003).CrossRefGoogle Scholar
5Takata, Y., Adachi, Y., Haneda, H., Wada, Y., Mitsuhashi, T., Ohtani, M., Fukumura, T., Kawasaki, M. and Koinuma, H. in Combinatorial and Artificial Intelligence Methods in Materials Science, edited by Takeuchi, I., Newsam, J.M., Wille, L.T., Koinuma, H., and Amis, E.J. (Mater. Res. Soc. Symp. Proc. 700, Warrendale, PA, 2002), pp. 167172.Google Scholar
6Takata, Y., Adachi, Y., Haneda, H., Wada, Y., Mitsuhashi, T., Itaka, K. and Koinuma, H.: Thermal diffusivity of (Ca1-xSrx )3Co4O9 thin films using transient grating configuration. J. Mater. Res. 18, 2473 (2003).CrossRefGoogle Scholar
7Itoh, M., Natori, I., Kubota, S. and Motoya, K.: Spin-glass behavior and magnetic phase diagram of La1-xSrxCoO3 (0 = x = 0.5) studied by magnetization measurements. J. Phys. Soc. Jpn. 63, 1486 (1994).CrossRefGoogle Scholar
8Asai, K., Yoneda, A., Yokokura, O., Tranquada, J.M., Shirane, G. and Kohn, K.: Two spin-state transitions in LaCoO3. J. Phys. Soc. Jpn. 67, 290 (1998).CrossRefGoogle Scholar
9Tabata, K., Matsumoto, I. and Kohiki, S.: Surface characterization and catalytic properties of La1- x Srx CoO3. J. Mater. Sci. 22, 1882 (1987).CrossRefGoogle Scholar
10Fukumura, T., Ohtani, M., Kawasaki, M., Okimoto, Y., Kageyama, T., Koida, T., Hasegawa, T., Tokura, Y. and Koinuma, H.: Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach. Appl. Phys. Lett. 77, 3426 (2000).CrossRefGoogle Scholar