Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-18T21:44:21.408Z Has data issue: false hasContentIssue false

Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces

Published online by Cambridge University Press:  31 January 2011

Sheng Xu
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
Changshi Lao
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
Benjamin Weintraub
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
Zhong Lin Wang*
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
*
a)Address all correspondence to this author. e-mail: zhong.wang@mse.gatech.edu
Get access

Abstract

A novel ZnO seedless chemical approach for density-controlled growth of ZnO nanowire (NW) arrays has been developed. The density of ZnO NWs is controlled by changing the precursor concentration. Effects of both growth temperature and growth time are also investigated. By this novel synthesis technique, ZnO NW arrays can grow on any substrate (polymer, glass, semiconductor, metal, and more) as long as the surface is smooth. This technique represents a new, low-cost, time-efficient, and scalable method for fabricating ZnO NW arrays for applications in field emission, vertical field effect transistor arrays, nanogenerators, and nanopiezotronics.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Law, M., Greene, L.E., Johnson, J.C., Saykally, R.Yang, P.D.: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 2005CrossRefGoogle ScholarPubMed
2Huang, M.H., Mao, S., Feick, H., Yan, H.Q., Wu, Y.Y., Kind, H., Weber, E., Russo, R.Yang, P.D.: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 2001CrossRefGoogle ScholarPubMed
3Ye, Z.Z., Huang, J.Y., Xu, W.Z., Zhou, J.Wang, Z.L.: Catalyst-free MOCVD growth of aligned ZnO nanotip arrays on silicon substrate with controlled tip shape. Solid State Commun. 141, 464 2007CrossRefGoogle Scholar
4Jeong, M.C., Oh, B.Y., Ham, M.H.Myoung, J.M.: Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett. 88, 202105 2006CrossRefGoogle Scholar
5Zhu, Y.W., Zhang, H.Z., Sun, X.C., Feng, S.Q., Xu, J., Zhao, Q., Xiang, B., Wang, R.M.Yu, D.P.: Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83, 144 2003CrossRefGoogle Scholar
6Wang, X.D., Summers, C.J.Wang, Z.L.: Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 4, 423 2004CrossRefGoogle ScholarPubMed
7Lyu, S.C., Zhang, Y., Lee, C.J., Ruh, H.Lee, H.J.: Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem. Mater. 15, 3294 2003CrossRefGoogle Scholar
8Yuan, H.Zhang, Y.: Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD. J. Cryst. Growth 263, 119 2004CrossRefGoogle Scholar
9Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai, G.Yang, P.D.: General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 5, 1231 2005CrossRefGoogle ScholarPubMed
10Wu, J.J., Wen, H.I., Tseng, C.H.Liu, S.C.: Well-aligned ZnO nanorods via hydrogen treatment of ZnO films. Adv. Funct. Mater. 14, 806 2004CrossRefGoogle Scholar
11Weintraub, B., Deng, Y.L.Wang, Z.L.: Position-controlled seedless growth of ZnO nanorod arrays on a polymer substrate via wet chemical synthesis. J. Phys. Chem. C 111, 10162 2007CrossRefGoogle Scholar
12Cheng, H.M., Hsu, H.C., Yang, S., Wu, C.Y., Lee, Y.C., Lin, L.J.Hsieh, W.F.: The substrate effect on the in-plane orientation of vertically well-aligned ZnO nanorods grown on ZnO buffer layers. Nanotechnology 16, 2882 2005CrossRefGoogle Scholar
13Hsu, H.C., Tseng, Y.K., Cheng, H.M., Kuo, J.H.Hsieh, W.F.: Selective growth of ZnO nanorods on pre-coated ZnO buffer layer. J. Cryst. Growth 261, 520 2004CrossRefGoogle Scholar
14Ma, T., Guo, M., Zhang, M., Zhang, Y.J.Wang, X.D.: Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology 18, 035605 2007CrossRefGoogle ScholarPubMed
15Song, J.H., Liu, J., Wang, Z.L.Gao, P.X.: Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv. Mater. (Weinheim, Gemany) 19, 67 2007Google Scholar
16Wang, Z.L.: The new field of nanopiezotronics. Mater. Today 10, 20 2007CrossRefGoogle Scholar
17Wang, Z.L.: Nanopiezotronics. Adv. Mater. (Weinheim, Germany) 19, 889 2007CrossRefGoogle Scholar
18Liu, D.F., Xiang, Y.J., Wu, X.C., Zhang, Z.X., Liu, L.F., Song, L., Zhao, X.W., Luo, S.D., Ma, W.J., Shen, J., Zhou, W.Y., Wang, G., Wang, C.Y.Xie, S.S.: Periodic ZnO nanorod arrays defined by polystyrene microsphere self-assembled monolayers. Nano Lett. 6, 2375 2006CrossRefGoogle ScholarPubMed
19Tak, Y.Yong, K.: Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J. Phys. Chem. B 109, 19263 2005CrossRefGoogle ScholarPubMed
20Sung-Hak, Y., Seung-Kyu, C., Jae-Min, J., Seung-Hee, K., Jung, A.K.Woo-Gwang, J.: Patterned growth of ZnO nanorod by solution chemical method. SPIE 6474, 64741L 2007Google Scholar
21Kang, B.S., Pearton, S.J.Ren, F.: Low temperature (<100 °C) patterned growth of ZnO nanorod arrays on Si. Appl. Phys. Lett. 90, 083104 2007CrossRefGoogle Scholar
22Yong-Jin, K., Chul-Ho, L., Joon, H. Young, Gyu-Chul, Y., Soo, K. SungHyeonsik, C.: Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method. Appl. Phys. Lett. 89, 163128 2006Google Scholar
23Cui, J.B.Gibson, U.: Low-temperature fabrication of single-crystal ZnO nanopillar photonic bandgap structures. Nanotechnology 18, 15532 2007CrossRefGoogle Scholar
24Zhang, J., Sun, L.D., Yin, J.L., Su, H.L., Liao, C.S.Yan, C.H.: Control of ZnO morphology via a simple solution route. Chem. Mater. 14, 4172 2002CrossRefGoogle Scholar
25Zhang, J., Sun, L.D., Pan, H.Y., Liao, C.S.Yan, C.H.: ZnO nanowires fabricated by a convenient route. New J. Chem. 26, 33 2002CrossRefGoogle Scholar
26Zhang, J., Sun, L.D., Jiang, X.C., Liao, C.S.Yan, C.H.: Shape evolution of one-dimensional single-crystalline ZnO nanostructures in a microemulsion system. Cryst. Growth Des. 4, 309 2004CrossRefGoogle Scholar
27Vayssieres, L.: Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. (Weinheim, Germany) 15, 464 2003CrossRefGoogle Scholar
28Gupta, V., Bhattacharya, P., Yuzuk, Y.I., Sreenivas, K.Katiyar, R.S.: Optical phonon modes in ZnO nanorods on Si prepared by pulsed laser deposition. J. Cryst. Growth 287, 39 2006CrossRefGoogle Scholar
29Yang, R.S.Wang, Z.L.: Interpenetrative and transverse growth process of self-catalyzed ZnO nanorods. Solid State Commun. 134, 741 2005CrossRefGoogle Scholar