Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-17T06:34:09.516Z Has data issue: false hasContentIssue false

Electrical technique for monitoring crack growth in thin-film fracture mechanics specimens

Published online by Cambridge University Press:  01 November 2004

Eric P. Guyer
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Reinhold H. Dauskardt*
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
*
a) Address all correspondence to this author. e-mail: dauskardt@stanford.edu
Get access

Abstract

An accurate and reliable electrical technique for continuous monitoring of crack growth in fracture specimens containing technologically relevant thin-film device structures has been developed. Both adhesive and cohesive crack growth measurements are reported using a SiO2 passivation layer and a conducting titanium film deposited on the side face of fracture specimens. Crack velocity measurements approaching 10−12 m/s were achieved, representing nearly an order of magnitude improvement over commonly used compliance-based techniques. The technique may be particularly useful for elucidating near threshold crack velocity behavior, which is important for thin-film reliability.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Guyer, E.P., Dauskardt, R.H.: Fracture of nanoporous thin-film glasses. Nat. Mater. 3, 53 (2004).CrossRefGoogle ScholarPubMed
2.Snodgrass, J.M., Pantelidis, D., Jenkins, M.L., Bravman, J.C., Dauskardt, R.H.: Subcritical debonding of polymer/silica interfaces under monotonic and cyclic loading. Acta Mater. 50, 2395 (2002).CrossRefGoogle Scholar
3.Kook, S.Y., Dauskardt, R.H.: Moisture-assisted subcritical debonding of a polymer/metal interface. J. Appl. Phys. 91, 1293 (2002).CrossRefGoogle Scholar
4.Dauskardt, R.H., Lane, M., Ma, Q., Krishna, N.: Adhesion and debonding of multi-layer thin film structures. Engineering Fracture Mechanics 61, 141 (1998).CrossRefGoogle Scholar
5.Cook, R.F., Liniger, E.G.: Kinetics of indentation cracking in glass. J. Am. Ceram. Soc. 76, 1096 (1993).CrossRefGoogle Scholar
6.Cook, R., Liniger, E.: Stress-corrosion cracking of low-dielectric constant spin-on-glass thin films. J. Electrochem. Soc. 146, 4439 (1999).CrossRefGoogle Scholar
7.Lin, Y., Vlassak, J., Tsui, T., McKerrow, A.: Environmental Effects on Subcritical Delamination of Dielectric and Metal Films from Organosilicate Glass (OSG) Thin Films. (Materials Research Society, Warrendale, PA, 2003).Google Scholar
8.Muhlstein, C.L., Stach, E.A., Ritchie, R.O.: Mechanism of fatigue in micron-scale films of polycrystalline silicon for microelectromechanical systems. Appl. Phys. Lett. 80, 1532 (2002).CrossRefGoogle Scholar
9.Lane, M.: Interface fracture. Annu. Rev. Mater. Res. 33, 29 (2003).CrossRefGoogle Scholar
10.Lane, M., Ware, R., Voss, S., Ma, Q., Fujimoto, H., Dauskardt, R.H.: Materials Reliability in Microelectronics VII Symposium (Materials Research Society, San Francisco, CA, 1997).Google Scholar
11.Lane, M.W., Snodgrass, J.M., Dauskardt, R.H.: Environmental effects on interfacial adhesion. Microelectron Reliab. 41, 1615 (2001).CrossRefGoogle Scholar
12.Kanninen, M.F.: Augmented double cantilever beam model for studying crack-propagation and arrest. International Journal of Fracture 9, 83 (1973).CrossRefGoogle Scholar
13.Mroz, J., Dauskardt, R.H., Schleinkofer, U.: New adhesion measurement technique for coated cutting tool materials. Int. J. Refract. Met. Hard Mater. 16, 395 (1998).CrossRefGoogle Scholar
14.Aronson, G.H., Ritchie, R.O.: Optimization of the electrical potential technique for crack growth monitoring in compact test pieces using finite element analysis. J. Test. Eval. 7, 208 (1979).CrossRefGoogle Scholar
15.Hartman, G., Johnson, D.: D-C electric-potential method applied to thermal/mechanical fatigue crack growth. Experimental Mechanics 27, 106 (1987).CrossRefGoogle Scholar
16.Dauskardt, R.H., Yu, W., Ritchie, R.O.: Fatigue-crack propagation in transformation-toughened zirconia ceramic. J Am. Ceram. Soc. 70, C248 (1987).CrossRefGoogle Scholar
17.Dill, S.J., Bennison, S.J., Dauskardt, R.H.: Subcritical crack-growth behavior of borosilicate glass under cyclic loads: Evidence of a mechanical fatigue effect. J Am. Ceram. Soc. 80, 773 (1997).CrossRefGoogle Scholar
18.Fitzgerald, A.M., Dauskardt, R.H., Kenny, T.W.: Fracture toughness and crack growth phenomena of plasma-etched single crystal silicon. Sens. Actuators A Phys. 83, 194 (2000).CrossRefGoogle Scholar
19.Kanninen, M.F.: An augmented double cantilever beam model for studying crack propagation and arrest. International Journal of Fracture 9, 83 (1973).CrossRefGoogle Scholar
20.Wiederhorn, S.M.: Influence of water vapor on crack propagation in soda-lime glass. J Am. Ceram. Soc. 50, 407 (1967).CrossRefGoogle Scholar
21.Lawn, B.R.: Fracture of Brittle Solids (Cambridge University Press, Cambridge, U.K., 1993).Google Scholar
22.Lane, M., Dauskardt, R.H., Krishna, N., Hashim, I.: Adhesion and reliability of copper interconnects with Ta and TaN barrier layers. J. Mater. Res. 15, 203 (2000).CrossRefGoogle Scholar