Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-14T22:16:55.826Z Has data issue: false hasContentIssue false

Enhancing thermoelectric properties of Cu1.8+xSe compounds

Published online by Cambridge University Press:  13 May 2014

Liang Zou
Affiliation:
Beijing Key Lab of New Energy Materials and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Bo-Ping Zhang*
Affiliation:
Beijing Key Lab of New Energy Materials and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Zhen-Hua Ge
Affiliation:
Beijing Key Lab of New Energy Materials and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Li-Juan Zhang*
Affiliation:
Beijing Key Lab of New Energy Materials and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
*
a)Address all correspondence to this author. e-mail: bpzhang@ustb.edu.cn
Get access

Abstract

P-type Cu1.8+xSe (x = 0, 0.16, 0.20) compounds were synthesized by mechanical alloying and spark plasma sintering technique. A 100% enhancement of the Seebeck coefficient was achieved in the whole temperature interval for x = 0.16 and x = 0.20 bulks compared with that of the x = 0 bulk. The thermal conductivity was all below 1.6 W m−1 K−1 in the whole temperature interval for x = 0.16 and x = 0.20 bulks, showing a pronounced reduction compared with that of the x = 0 bulk. The lowest thermal conductivity 0.69 W m−1 K−1 was achieved in the x = 0.16 sample at 773 K, whereby a maximum ZT value of 1.23 was obtained, revealing that optimizing Cu content in Cu1.8+xSe system is an effective method to improve the thermoelectric (TE) merit and indicating a great potential for TE application along with their nontoxicity and low cost.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lu, P.X., Wang, X.B., and Lu, M.M.: Largely enhanced thermoelectric properties of the binary-phased PbTe-Sb2Te3 nanocomposites. J. Mater. Res. 27(4), 734 (2012).CrossRefGoogle Scholar
Poudel, B., Hao, Q., Ma, Y., Lan, Y.C., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., and Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).CrossRefGoogle ScholarPubMed
Biswas, K., Good, M.S., Roberts, K.C., Subramanian, M.A., and Hendricks, J.: Thermoelectric and structural properties of high-performance in-based skutterudites for high-temperature energy recovery. J. Mater. Res. 26(15), 1827 (2011).CrossRefGoogle Scholar
Zhou, M., Li, J.F., and Kita, T.: Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance. J. Am. Chem. Soc. 130, 4527 (2008).CrossRefGoogle ScholarPubMed
de Lima, J.C., Machado, K.D., Grandi, T.A., Gasperini, A.A.M., Maurmann, C.E., Souza, S.M., and Campos, C.E.M.: Structural study of Cu2−x Se alloys produced by mechanical alloying. Acta Crystallogr., Sect. B 60, 282 (2004).Google Scholar
Heyding, R.D. and Murry, R.M.: The crystal structures of Cu1.8Se, Cu3Se2, α- and γ-CuSe, CuSe2, CuSe2 ІІ. Can. J. Chem. 54, 841 (1976).CrossRefGoogle Scholar
Danilkin, S.A.: An investigation of the structural dynamics in the fast ionic conductor Cu2−δSe using neutron scattering. J. Alloys Compd. 467, 509 (2009).CrossRefGoogle Scholar
Xiao, X.X., Xie, W.J., Tang, X.F., and Zhang, Q.J.: Phase transition and high temperature thermoelectric properties of copper selenide Cu2-x Se (0 ≤ x ≤ 0.25). Chin. Phys. B 20(8), 087201 (2011).CrossRefGoogle Scholar
Ohtani, T., Tachibana, Y., Ogura, J., Miyake, T., Okada, Y., and Yokota, Y.: Physical properties and phase transitions of β-Cu2-x Se (0.20 ≤ x ≤0.25). J. Alloys Compd. 279, 136 (1998).CrossRefGoogle Scholar
Zhao, L.D., Zhang, B.P., Liu, W.S., Zhang, H.L., and Li, J.F.: Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. J. Solid State Chem. 181, 3278 (2008).CrossRefGoogle Scholar
Hang, C.G., Zhang, B.P., Ge, Z.H., Zhang, L.J., and Liu, Y.C.: Thermoelectric properties of p-type semiconductors copper chromium disulfide CuCrS2+x . J. Mater. Sci. 48, 4081 (2013).Google Scholar
Liu, Y., Zhao, L.D., and Liu, Y.C.: Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J. Am. Chem. Soc. 133, 20112 (2011).CrossRefGoogle ScholarPubMed
Zhu, G.H., Lan, Y.C., Wang, H., Joshi, G., Hao, Q., Chen, G., and Ren, Z.F.: Effect of selenium deficiency on the thermoelectric properties of n-type In4Se3−x compounds. Phys. Rev. B 83, 115201 (2011).CrossRefGoogle Scholar
Holgate, T.C., Zhu, S., Zhou, M., Bangarigadu-Sanasy, S., Kleinke, H., He, J., and Tritt, T.M.: Thermoelectric transport properties of polycrystalline titanium diselenide co-intercalated with nickel and titanium using spark plasma sintering. J. Solid State Chem. 197, 273 (2013).CrossRefGoogle Scholar
Chakrabarti, D.J. and Laughlin, D.E.: The Cu–Se (copper–selenium) system. Bull. Alloy Phase Diagr. 2(3), 305 (1981).CrossRefGoogle Scholar
Yu, B., Liu, W.S., Chen, S., Wang, H., Wang, H.Z., Chen, G., and Ren, Z.F.: Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer. Nano Energy 1, 472 (2012).CrossRefGoogle Scholar
Gelbstein, Y.: Morphological effects on the electronic transport properties of three-phase thermoelectric materials. J. Appl. Phys. 112, 113721 (2012).CrossRefGoogle Scholar
Ge, Z.H., Zhang, B.P., Liu, Y., and Li, J.F.: Nanostructured Bi2-xCuxS3 bulk materials with enhanced thermoelectric performance. Phys. Chem. Chem. Phys. 14, 4475 (2012).CrossRefGoogle ScholarPubMed
Ehrenreich, H.: Band structure and transport properties of some III-V compounds. J. Appl. Phys. 32, 2155 (1961).CrossRefGoogle Scholar
Pearsall, T.P.: Alloy scattering effects and calculated mobility in n-type Ga0.47In0.53As. Electron. Lett. 17(4), 169 (1981).CrossRefGoogle Scholar
Glicksman, M.: Mobility of electrons in germanium-silicon alloys. Phys. Rev. 111, 125 (1958).CrossRefGoogle Scholar
Johnsen, S., He, J.Q., Androulakis, J., Dravid, V.P., Todorov, I., Chung, D.Y., and Kanatzidis, M.G.: Nanostructures boost the thermoelectric performance of PbS. J. Am. Chem. Soc. 133, 3460 (2011).CrossRefGoogle ScholarPubMed
Zhang, Y.C., Day, T., Snedaker, M.L., Wang, H., Kramer, S., Birkel, C.S., Ji, X.L., Liu, D.Y., Snyder, G.J., and Stucky, G.D.: A mesoporous anisotropic n-type Bi2Te3 monolith with low thermal conductivity as an efficient thermoelectric material. Adv. Mater. 24, 5065 (2012).CrossRefGoogle ScholarPubMed
Row, D.M.: Thermoelectrics (CRC Press LLC, Boca Raton, 1995).Google Scholar
Braden, M., Pintschovius, L., Uefuji, T., and Yamada, K.: Dispersion of the high-energy phonon modes in Nd0.85Ce0.15CuO4 . Phys. Rev. B 18, 1 (2005).Google Scholar
Liu, H.L., Shi, X., Xu, F.F., Zhang, L.L., Zhang, W.Q., Chen, L.D., Li, Q., Uher, C., Day, T., and Snyder, G.J.: Copper ion liquid-like thermoelectric. Nat. Mater. 11, 422 (2012).CrossRefGoogle Scholar
Zebarjadi, M., Esfarjani, K., Dresselhaus, M.S., Ren, Z.F., and Chen, G: Perspectives on thermoelectrics: From fundamentals to device applications. Energy Environ. Sci. 5, 5147 (2012).CrossRefGoogle Scholar
Klemens, P.G.: Thermal resistance due to point defects at high temperatures. Phys. Rev. 119, 507 (1960).CrossRefGoogle Scholar