Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-02T02:39:27.843Z Has data issue: false hasContentIssue false

Fabrication of porous/hollow tin (IV) oxide skeletons from polypeptide mediated self-assembly

Published online by Cambridge University Press:  31 January 2011

Jie Zhu*
Affiliation:
School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798
T.S. Zhang
Affiliation:
School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798
J. Ma
Affiliation:
School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798
B.Y. Tay
Affiliation:
Singapore Institute of Manufacturing Technology, Singapore 638075
*
a)Address all correspondence to this author.e-mail: j_zhu@pmail.ntu.edu.sg
Get access

Abstract

We demonstrate the aqueous self-assembly of ligand-assisted SnO2 sol precursors onto preformed poly-l-lysine templates through interfacial electrostatic forces (COO/NH3+). On the removal of organics, two unique coral-like and sea worm-like textures consisting of hierarchical pores (macropores and mesopores) and nanocrystalline SnO2 frameworks are synthesized, mainly depending on the chelator/Sn molar ratio. Structural formation is discussed based on acid-base interaction and interfacial charge density matching. For the first time, metal oxide structures mediated by polypeptides are reported. More importantly, the method described here might open a generally attractive route for synthesizing complex nanostructures of other oxides (e.g., ZnO, TiO2, and ZrO2).

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tomczak, M.M., Glawe, D.D., Drummy, L.F., Lawrence, C.G., Stone, M.O., Perry, C.C., Pochan, D.J., Deming, T.J.Naik, R.R.: Polypeptide-templated synthesis of hexagonal silica platelets. J. Am. Chem. Soc. 127, 12577 2005CrossRefGoogle ScholarPubMed
2Hawkins, K.M., Wang, S.S., Ford, D.M.Shantz, D.F.: Poly-L-lysine templated silicas: Using polypeptide secondary structure to control oxide pore architectures. J. Am. Chem. Soc. 126, 9112 2004CrossRefGoogle ScholarPubMed
3McKenna, B.J., Birkedal, H., Bartl, M.H., Deming, T.J.Stucky, G.D.: Micrometer-sized spherical assemblies of polypeptides and small molecules by acid-base chemistry. Angew. Chem., Int. Ed. Engl. 43, 5652 2004CrossRefGoogle ScholarPubMed
4Wong, M.S., Cha, J.N., Choi, K.S., Deming, T.J.Stucky, G.D.: Assembly of nanoparticles into hollow spheres using block copolypeptides. Nano Lett. 2, 583 2002CrossRefGoogle Scholar
5Ono, Y., Kanekiyo, Y., Inoue, K., Hojo, J., Nango, M.Shinkai, S.: Preparation of novel hollow fiber silica using collagen fibers as a template. Chem. Lett. (Jpn.) 28, 475 1999CrossRefGoogle Scholar
6Sandhage, K.H., Dickerson, M.B., Huseman, P.M., Caranna, M.A., Clifton, J.D., Bull, T.A., Heibel, T.J., Overton, W.R.Schoenwaelder, M.E.A.: Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: Shape-preserving reactive conversion of biosilica (diatom) microshells. Adv. Mater. 14, 429 20023.0.CO;2-C>CrossRefGoogle Scholar
7Walsh, D.Mann, S.: Fabrication of hollow porous shells of calcium carbonate from self-organizing media. Nature 377, 320 1995CrossRefGoogle Scholar
8Chia, S., Urano, J., Tamanoi, F., Dunn, B.Zink, J.I.: Patterned hexagonal arrays of living cells in sol-gel silica films. J. Am. Chem. Soc. 122, 6488 2000CrossRefGoogle Scholar
9Davis, S.A., Burkett, S.L., Mendelson, N.H.Mann, S.: Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature 385, 420 1997CrossRefGoogle Scholar
10Braun, E., Eichen, Y., Sivan, U.Ben-Yoseph, G.: DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775 1998CrossRefGoogle ScholarPubMed
11Shenton, W., Douglas, T., Young, M., Stubbs, G.Mann, S.: Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 11, 253 19993.0.CO;2-7>CrossRefGoogle Scholar
12Deming, T.J.: Facile synthesis of block copolypeptides of defined architecture. Nature 390, 386 1997CrossRefGoogle ScholarPubMed
13Cha, J.N., Stucky, G.D., Morse, D.E.Deming, T.J.: Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 402, 289 2000CrossRefGoogle Scholar
14Cha, J.N., Bartl, M.H., Wong, M.S., Popitsch, A., Deming, T.J.Stucky, G.D.: Microcavity lasing from block peptide hierarchically assembled quantum dot spherical resonators. Nano Lett. 3, 907 2003CrossRefGoogle Scholar
15Cha, J.N., Birkedal, H., Euliss, L.E., Bartl, M.H., Wong, M.S., Deming, T.J.Stucky, G.D.: Spontaneous formation of nanoparticle vesicles from homopolymer polyelectrolytes. J. Am. Chem. Soc. 125, 8285 2003CrossRefGoogle ScholarPubMed
16Jan, J.S., Lee, S., Carr, C.S.Shantz, D.F.: Biomimetic synthesis of inorganic nanospheres. Chem. Mater. 17, 4310 2005CrossRefGoogle Scholar
17Glawe, D.D., Rodríguez, F., Stone, M.O.Naik, R.R.: Polypeptidemediated silica growth on indium tin oxide surfaces. Langmuir 21, 717 2005CrossRefGoogle ScholarPubMed
18Naik, R.R., Whitlock, P.W., Rodriguez, F., Brott, L.L., Glawe, D.D., Clarson, S.J.Stone, M.O.: Controlled formation of biosilica structures in vitro. Chem. Commun. 238 2003CrossRefGoogle ScholarPubMed
19Holowka, E.P., Pochan, D.J.Deming, T.J.: Charged polypeptide vesicles with controllable diameter. J. Am. Chem. Soc. 127, 12423 2005CrossRefGoogle ScholarPubMed
20Patwardhan, S.V., Mukherjee, N., Steinitz-Kannan, M.Clarson, S.J.: Bioinspired synthesis of new silica structures. Chem. Commun. 1122 2003CrossRefGoogle ScholarPubMed
21Wu, N.L., Wang, S.Y.Rusakova, I.A.: Inhibition of crystallite growth in the sol-gel synthesis of nanocrystalline metal oxides. Science 285, 1375 1999CrossRefGoogle ScholarPubMed
22Harrison, P.G.Willett, M.J.: Mechanism of operation of tin (IV) oxide carbon monoxide sensors. Nature 332, 337 1988CrossRefGoogle Scholar
23Harrison, P.G.: Chemistry of Tin Chapman and Hall New York 1989 Chap. 12,Google Scholar
24Hamberg, I.Granqvist, C.G.: Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123 1986CrossRefGoogle Scholar
25Vilaça, G., Jousseaume, B., Mahieux, C., Belin, C., Cachet, H., Bernard, M.C., Vivier, V.Toupance, T.: Tin dioxide materials chemically modified with trialkynylorganotins: Functional nanohybrids for photovoltaic applications. Adv. Mater. 18, 1073 2006CrossRefGoogle Scholar
26Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissörtel, F., Salbeck, J., Spreitzer, H.Grätzel, M.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583 1998CrossRefGoogle Scholar
27Liu, Y., Dong, J.Liu, M.L.: Well-aligned nano-box-beams of SnO2. Adv. Mater. 16, 353 2004CrossRefGoogle Scholar
28Dai, Z.R., Pan, Z.W.Wang, Z.L.: Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13, 9 2003CrossRefGoogle Scholar
29Liu, Y., Zheng, C., Wang, W., Yin, C.Wang, G.: Synthesis and characterization of rutile SnO2 nanorods. Adv. Mater. 13, 1883 20013.0.CO;2-Q>CrossRefGoogle Scholar
30Luo, S.H., Fan, J.Y., Liu, W.L., Zhang, M., Song, Z.T., Lin, C.L., Wu, X.L.Chu, P.K.: Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts. Nanotechnology 17, 1695 2006CrossRefGoogle ScholarPubMed
31Zhang, J.R.Gao, L.: Synthesis and characterization of nanocrystalline tin oxide by sol–gel method. J. Solid State Chem. 177, 1425 2004CrossRefGoogle Scholar
32Monredon, S.D., Cellot, A., Ribot, F., Sanchez, C., Armelao, L., Gueneau, L.Delattre, L.: Synthesis and characterization of crystalline tin oxide nanoparticles. J. Mater. Chem. 12, 2396 2002CrossRefGoogle Scholar
33Song, Y.W., Ma, Y., Xiong, H., Jia, Y.Q., Liu, M.L.Jin, M.Z.: Synthesis, crystal structure, Mossbauer spectra and dielectric property of La1−xSrxFe1−xTixO3 (x = 0, 0.1, 0.3, 0.5, 0.7, 1). Mater. Chem. Phys. 78, 660 2003CrossRefGoogle Scholar
34Tsay, J.D.Fang, T.T.: Effects of molar ratio of citric acid to cations and of pH value on the formation and thermal-decomposition behavior of barium titanium citrate. J. Am. Ceram. Soc. 82, 1409 1999CrossRefGoogle Scholar
35Choy, J.H.Han, Y.S.: Citrate route to the piezoelectric Pb(Zr, Ti)O3 oxide. J. Mater. Chem. 7, 1815 1997CrossRefGoogle Scholar
36Yin, H.B., Wada, Y., Kitamura, T., Sumida, T., Hasegawa, Y.Yanagida, S.: Novel synthesis of phase-pure nano-particulate anatase and rutile TiO2 using TiCl4 aqueous solutions. J. Mater. Chem. 12, 378 2002CrossRefGoogle Scholar
37Padden, F.J. Jr., Keith, H.D.Giannoni, G.: Single crystals of poly-L-lysine. Biopolymers 7, 793 1969CrossRefGoogle Scholar
38Gregg, S.G.Wing, K.S.W.: Adsorption, Surface Area and Porosity Academic Press New York 1982 Chap. 3 and 4,Google Scholar
39Zhu, J., Tay, B.Y.Ma, J.: Synthesis and mechanisms study of mesoporous SnO2/SiO2 composites. J. Nanosci. Nanotechnol. 6, 2046 2006CrossRefGoogle ScholarPubMed
40Chen, F.L.Liu, M.L.: Preparation of mesoporous tin oxide for electrochemical applications. Chem. Commun. 1829 1999CrossRefGoogle Scholar
41Brinker, C.J.Scherer, G.W.: Sol-Gel Science Academic Press New York 1990 Chap. 3,Google Scholar
42Niederberger, M., Garnweitner, G., Krumeich, F., Nesper, R., Cölfen, H.Antonietti, M.: Tailoring the surface and solubility properties of nanocrystalline titania by a nonaqueous in situ functionalization process. Chem. Mater. 16, 1202 2004CrossRefGoogle Scholar