Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-02T21:52:51.929Z Has data issue: false hasContentIssue false

Formation and properties of strontium-based bulk metallic glasses with ultralow glass transition temperature

Published online by Cambridge University Press:  05 July 2012

Kun Zhao*
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China; and Hebei University of Science and Technology, Shijiazhuang 050018, People’s Republic of China
Wei Jiao
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
Jiang Ma
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
Xuan Qiao Gao
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
Wei Hua Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: zhk3415@163.com
Get access

Abstract

We report a family of novel Strontium (Sr)-based bulk metallic glasses (BMGs) with good glass-forming ability and ultralow glass transition temperature (Tg) by strategic composition design. The Sr-based BMGs can be easily formed with wide composition range by a conventional copper mold cast method. The glassy alloys have many unique and diversified properties such as lowest glass transition temperature, ultralow elastic modulus, small value of Poisson’s ratio and fragility, homogeneous flow at room temperature and tunable water degradation behavior. The BMGs with novel physical and chemical properties could have potential applications for biomaterial and micromanufacture, and are model system for studying some fundamental issues such as crystallization, relaxation and deformation in metallic glass.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Greer, A.L.: Metallic glasses… on the threshold. Mater. Today 12,14 (2009).CrossRefGoogle Scholar
Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
Johnson, W.L., Kaltenboeck, G., Demetriou, M.D., Schramm, J.P., Liu, X., Samwer, D., Kim, C.P., and Hofmann, D.C.: Beating crystallization in glass-forming metals by millisecond heating and processing. Science 332, 828 (2011).CrossRefGoogle ScholarPubMed
Zberg, B., Uggowitzer, P.J., and Löffler, J.L.: MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 8, 887 (2009).CrossRefGoogle ScholarPubMed
Pauly, S., Gorantla, S., Wang, S.G., Kühn, U., and Eckert, J.: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 7, 473 (2010).CrossRefGoogle Scholar
Kumar, G., Tang, H.X., and Schroers, J.: Nanomolding with amorphous metals. Nature 457, 868 (2009).CrossRefGoogle Scholar
Saotome, Y., Itoh, K., Zhang, T., and Inoue, A.: Superplastic nanoforming of Pd-based amorphous alloy. Scr. Mater. 44, 1541 (2001).CrossRefGoogle Scholar
Chu, J.P., Wijaya, H., Wu, C.W., Tsai, T.R., Wei, C.S., Nier, T.G., and Wadsworth, J.: Nanoimprinting of gratings on a bulk metallic glass. Appl. Phys. Lett. 90, 034101 (2007).CrossRefGoogle Scholar
Pan, C.T., Wu, T.T., Chen, M.F., Chang, Y.C., Lee, C.J., and Huang, J.C.: Hot embossing of microlens array on bulk metallic glass. Sens. Actuators, A 141, 422 (2008).CrossRefGoogle Scholar
Zhang, B., Zhao, D.Q., Pan, M.X., Wang, W.H., and Greer, A.L.: Amorphous metallic plastic. Phys. Rev. Lett. 94, 205502 (2005).CrossRefGoogle ScholarPubMed
Li, J.F., Zhao, D.Q., Zhang, M.L., and Wang, W.H.: CaLi-based bulk metallic glasses with multiple superior properties. Appl. Phys. Lett. 93, 171907 (2008).CrossRefGoogle Scholar
Zhang, W., Guo, H., Chen, M.W., Saotome, Y., Qin, C.L., and Inoue, A.: New Au-based bulk glasses alloys with ultralow glass transition temperature. Scr. Mater. 61, 744 (2009).CrossRefGoogle Scholar
Wang, W.H.: Correlations between elastic moduli and properties in bulk metallic glasses. J. Appl. Phys. 99, 093506 (2006).CrossRefGoogle Scholar
Wang, W.H.: Elastic moduli and behaviors of metallic glasses. J. Non-Cryst. Solids 351, 1481 (2005).CrossRefGoogle Scholar
Wang, W.H.: The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487 (2012).CrossRefGoogle Scholar
Li, J.F., Wang, J.Q., Liu, X.F., Zhao, K., Bai, H.Y., Pan, M.X., and Wang, W.H.: Glassy metallic plastic. Sci. China Phys. Mech. Astron. 53, 409 (2010).CrossRefGoogle Scholar
Cohen, M.H. and Turnbull, D.: Composition requirement for glass formation in metallic and ionic systems. Nature 189, 131 (1961).CrossRefGoogle Scholar
Louzguine-Luzgin, D.V., Miracle, D.B., and Inoue, A.: Intrinsic and extrinsic factors influencing the glass-forming ability of alloys. Adv. Eng. Mater. 10, 1008 (2008).CrossRefGoogle Scholar
Wang, W.H.: Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater Sci. 52, 540 (2007).CrossRefGoogle Scholar
Senkov, O.N., Miracle, D.B., and Mullens, H.M.: Topological criteria for amorphization based on a thermodynamic approach. J. Appl. Phys. 97, 103502 (2005).CrossRefGoogle Scholar
Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).CrossRefGoogle ScholarPubMed
Miracle, D.B.: The efficient cluster-packing model – An atomic structural model for metallic glasses. Acta Mater. 54, 4317 (2006).CrossRefGoogle Scholar
Senkov, O.N., Miracle, D.B., Keppens, V., and Liaw, P.K.: Development and characterization of low-density Ca-based bulk metallic glasses: An overview. Metall. Mater. Trans. A 39, 1888 (2008).CrossRefGoogle Scholar
Angell, C.A.: Relaxation in liquids, polymers and plastic crystals – strong/fragile patterns and problems. J. Non-Cryst. Solids 131133, 13 (1991).CrossRefGoogle Scholar
Evenson, Z., Gallino, I., and Busch, R.: The effect of cooling rates on the apparent fragility of Zr-based bulk metallic glasses. J. Appl. Phys. 107, 123529 (2010).CrossRefGoogle Scholar
Penera, D.N.: Compilation of the fragility parameters of several glass-forming metallic alloys. J. Phys. Condens. Matter 11, 3807 (1999).Google Scholar
Böhmer, R., Ngai, K.L., Angell, C.A., and Plazek, D.J.: Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201 (1993).CrossRefGoogle Scholar
Brüning, R. and Samwer, K.: Glass transition on long time scale. Phys. Rev. B 46, 11318 (1992).CrossRefGoogle Scholar
Borrego, J.M., Conde, A., Roth, S., and Eckert, J.: Glass-forming ability and soft magnetic properties of FeCoSiAlGaPCB amorphous alloys. J. Appl. Phys. 92, 2073 (2002).CrossRefGoogle Scholar
Park, E.S., Na, J.H., and Kim, D.H.: Correlation between fragility and glass-forming ability/plasticity in glass-forming alloys. Appl. Phys. Lett. 91, 031907 (2007).CrossRefGoogle Scholar
Zhao, Z.F., Zhang, Z., Wen, P., Pan, M.X.. Zhao, D.Q., Wang, W.H. and Wang, W.L.: A high glass-forming alloy with low glass transition temperature. Appl. Phys. Lett. 82, 4699 (2003).CrossRefGoogle Scholar
Zhang, B., Wang, R.J., Zhao, D.Q., Pan, M.X., and Wang, W.H.: Properties of Ce-based bulk metallic glass-forming alloys. Phys. Rev. B 70, 224208 (2004).CrossRefGoogle Scholar
Zhang, Z., Wang, W.H., and Hirotsu, Y.: Glass-forming ability and crystallization behavior of Nd60Al10Ni10Cu20-xFex(x = 0, 2, 4) bulk metallic glass with distinct glass transition. Mater. Sci. Eng., A 385, 38 (2004).CrossRefGoogle Scholar
Luo, Q., Zhao, D.Q., Pan, M.X., Wang, R.J., and Wang, W.H.: Hard and fragile holmium-based bulk metallic glasses. Appl. Phys. Lett. 88, 181909 (2006).CrossRefGoogle Scholar
Shadowspeaker, L. and Busch, R.: On the fragility of Nb-Ni-based and Zr-based bulk metallic glasses. Appl. Phys. Lett. 85, 2508 (2004).CrossRefGoogle Scholar
Takeuchi, A., Chen, N., Wada, T., Yokoyama, Y., Kato, H., Inoue, A., and Yeh, J.W.: Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics 19, 1546 (2011).CrossRefGoogle Scholar
Gao, X.Q., Zhao, K., Ke, H.B., Ding, D.W., Wang, W.H., and Bai, H.Y.: High-mixing entropy bulk metallic glasses. J. Non-Cryst. Solids 357, 3557 (2011).CrossRefGoogle Scholar
Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
Kumar, G. and Schroers, J.: Write and erase mechanisms for bulk metallic glass. Appl. Phys. Lett. 92, 031901 (2008).CrossRefGoogle Scholar
Wang, J.Q., Yu, P., and Bai, H.Y.: Minor addition induced enhancement of strength of Mg-based bulk metallic glass. J. Non-Cryst. Solids 354, 5440 (2008).CrossRefGoogle Scholar
Wang, G.Y., Liaw, P.K., Senkov, O.N., Miracle, D.B., and Morrison, M.L.: Mechanical and fatigue behavior of Ca65Mg15Zn20 bulk-metallic glass. Adv. Eng. Mater. 11, 27 (2009).CrossRefGoogle Scholar
Kato, H., Kawamura, Y., Inoue, A., and Chen, H.S.: Newtonian to non-Newtonian master flow curves of a bulk glass alloy Pd40Ni10Cu30P20. Appl. Phys. Lett. 73, 3665 (1998).CrossRefGoogle Scholar
Lu, J., Ravichandran, G., and Johnson, W.L.: Deformation behavior of the ZrTiCuNiBe bulk metallic glass over a wide range of strain-rate and temperatures. Acta Mater. 51, 3429 (2003).CrossRefGoogle Scholar
Harmon, J.S., Demetriou, M.D., Johnson, W.L., and Tao, M.: Deformation of glass-forming metallic liquids: Configurational changes and their relation to elastic softening. Appl. Phys. Lett. 90, 131912 (2007).CrossRefGoogle Scholar
Zhao, K., Xia, X.X., Bai, H.Y., Zhao, D.Q., and Wang, W.H.: Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature. Appl. Phys. Lett. 98, 141913 (2011).CrossRefGoogle Scholar
Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
Bletry, M., Guyot, P., Blandin, J.J., and Soubeyroux, J.L.: Free volume model: High-temperature deformation of a Zr-based bulk metallic glass. Acta Mater. 54, 1257 (2006).CrossRefGoogle Scholar
Schuh, C.A., Hufnage, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).CrossRefGoogle Scholar
Dahlman, J., Senkov, O.N., Scott, J.M., and Miracle, D.B.: Corrosion properties of Ca-based bulk metallic glasses. Mater. Trans. 48, 1850 (2007)CrossRefGoogle Scholar
Gu, X.N., Zheng, Y.F., Zhong, S.P., Xi, T.F., Wang, J.Q., and Wang, W.H.: Corrosion of and cellular responses to Mg-Zn-Ca bulk metallic glasses. Biomaterials 31, 1093 (2010).CrossRefGoogle ScholarPubMed
Wang, Y.B., Xie, X.H., Li, H.F., Wang, X.L., Zhao, M.Z., Zhang, E.W., Bai, Y.J., Zheng, Y.F., and Qing, L.: Biodegradable CaMgZn bulk metallic glass for potential skeletal application. Acta Biomater. 7, 3196 (2011).CrossRefGoogle ScholarPubMed
Zhao, K., Li, J.F., Zhao, D.Q., Pan, M.X., and Wang, W.H.: Degradable Sr-based bulk metallic glasses. Scr. Mater. 61, 1091 (2009).CrossRefGoogle Scholar