Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-10-30T06:13:42.544Z Has data issue: false hasContentIssue false

Highly efficient solar steam generation by hybrid plasmonic structured TiN/mesoporous anodized alumina membrane

Published online by Cambridge University Press:  10 September 2018

Yue Bian
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Kun Tang*
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Zhonghua Xu
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Jingrui Ma
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Yang Shen
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Licai Hao
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Xuanhu Chen
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Kuiying Nie
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Jing Li
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Tongchuan Ma
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Shunming Zhu
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Jiandong Ye
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Xiang Xiong
Affiliation:
National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
Yi Yang
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Rong Zhang
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Youdou Zheng
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Shulin Gu*
Affiliation:
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
*
a)Address all correspondence to these authors. e-mail: ktang@nju.edu.cn
b)e-mail: slgu@nju.edu.cn
Get access

Abstract

Given the global water challenges, solar-driven steam generation has become a renewed topic recently as an energy-efficient way for clean water production. Here, a hybrid plasmonic structure consisting of a top layer of TiN nanoparticles (NPs) and a bottom layer of mesoporous anodized alumina membrane (AAM) was rationally designed and fabricated. The top TiN NPs with broadband light absorption acted as a plasmonic heating layer, which converted the absorbed light to heat efficiently for interfacial water heating. The AAM acted as the mechanical support layer, guaranteeing the heat isolation and continuous water replenishment. With optimized thickness of the TiN top layer, a solar steam generation efficiency of 87.7% was achieved in this study. This efficiency is comparable or even higher than prior studies. The current work proves the capability of the TiN NPs as an alternative photothermal material.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Elimelech, M. and Phillip, W.A.: The future of seawater desalination: Energy, technology, and the environment. Science 333, 712 (2011).CrossRefGoogle ScholarPubMed
Mekonnen, M.M. and Hoekstra, A.Y.: Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).CrossRefGoogle ScholarPubMed
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., FlöRke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., and Schewe, J.: Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. U. S. A. 111, 3251 (2014).CrossRefGoogle ScholarPubMed
Zhou, L., Zhuang, S., He, C., Tan, Y., Wang, Z., and Zhu, J.: Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy 32, 195 (2017).CrossRefGoogle Scholar
Hu, X., Xu, W., Zhou, L., Tan, Y., Wang, Y., Zhu, S., and Zhu, J.: Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 29, 5 (2017).Google ScholarPubMed
Zielinski, M.S., Choi, J.W., La Grange, T., Modestino, M., Hashemi, S.M., Pu, Y., Birkhold, S., Hubbell, J.A., and Psaltis, D.: Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano Lett. 16, 2159 (2016).CrossRefGoogle ScholarPubMed
Zeng, Y., Yao, J., Horri, B.A., Wang, K., Wu, Y., Li, D., and Wang, H.: Solar evaporation enhancement using floating light-absorbing magnetic particles. Energy Environ. Sci. 4, 4074 (2011).CrossRefGoogle Scholar
Ghasemi, H., Ni, G., Marconnet, A.M., Loomis, J., Yerci, S., Miljkovic, N., and Chen, G.: Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014).CrossRefGoogle ScholarPubMed
Wang, X., He, Y., Liu, X., Shi, L., and Zhu, J.: Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Sol. Energy 157, 35 (2017).CrossRefGoogle Scholar
Ito, Y., Tanabe, Y., Han, J., Fujita, T., Tanigaki, K., and Chen, M.: Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 27, 4302 (2015).CrossRefGoogle ScholarPubMed
Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J., and Mayes, A.M.: Science and technology for water purification in the coming decades. Nature 452, 301 (2008).CrossRefGoogle ScholarPubMed
Zhang, L., Tang, B., Wu, J., Li, R., and Wang, P.: Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889 (2015).CrossRefGoogle ScholarPubMed
Bae, K., Kang, G., Cho, S.K., Park, W., Kim, K., and Padilla, W.J.: Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015).CrossRefGoogle ScholarPubMed
Zhou, L., Tan, Y., Ji, D., Zhu, B., Zhang, P., Xu, J., Gan, Q., Yu, Z., and Zhu, J.: Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).CrossRefGoogle ScholarPubMed
Tiwari, G.N., Singh, H.N., and Tripathi, R.: Present status of solar distillation. Sol. Energy 75, 367 (2003).CrossRefGoogle Scholar
Neumann, O., Neumann, A.D., Silva, E., Ayala, O.C., Tian, S., Nordlander, P., and Halas, N.J.: Nanoparticle-mediated, light-induced phase separations. Nano Lett. 15, 7880 (2015).CrossRefGoogle ScholarPubMed
Neumann, O., Urban, A.S., Day, J., Lal, S., Nordlander, P., and Halas, N.J.: Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42 (2013).CrossRefGoogle ScholarPubMed
Zhou, L., Tan, Y., Wang, J., Xu, W., Yuan, Y., Cai, W., Zhu, S., and Zhu, J.: 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 10, 393 (2016).CrossRefGoogle Scholar
Sharon, H. and Reddy, K.S.: A review of solar energy driven desalination technologies. Renewable Sustainable Energy Rev. 41, 1080 (2015).CrossRefGoogle Scholar
Xiao, G., Wang, X., Ni, M., Wang, F., Zhu, W., Luo, Z., and Cen, K.: A review on solar stills for brine desalination. Appl. Energy 103, 642 (2013).CrossRefGoogle Scholar
Li, X., Lin, R., Ni, G., Xu, N., Hu, X., Zhu, B., Lv, G., Li, J., Zhu, S., and Zhu, J.: Three-dimensional artificial transpiration for efficient solar waste-water treatment. Natl. Sci. Rev. 5, 70 (2018).CrossRefGoogle Scholar
Gao, M., Connor, P.K.N., and Ho, G.W.: Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy Environ. Sci. 9, 3151 (2016).CrossRefGoogle Scholar
Wang, X., Ou, G., Wang, N., and Wu, H.: Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination. ACS Appl. Mater. Interfaces 8, 9194 (2016).CrossRefGoogle ScholarPubMed
Ishii, S., Sugavaneshwar, R.P., Chen, K., Dao, T.D., and Nagao, T.: Solar water heating and vaporization with silicon nanoparticles at mie resonances. Opt. Mater. Express 6, 640 (2016).CrossRefGoogle Scholar
Liu, Y., Lou, J., Ni, M., Song, C., Wu, J., Dasgupta, N.P., Tao, P., Shang, W., and Deng, T.: Bioinspired bifunctional membrane for efficient clean water generation. ACS Appl. Mater. Interfaces 8, 772 (2016).CrossRefGoogle ScholarPubMed
Dong, S., Feng, J., Fan, M., Pi, Y., Hu, L., Han, X., Liu, M., Sun, J., and Sun, J.: Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review. RSC Adv. 5, 14610 (2015).CrossRefGoogle Scholar
Fan, Y., Ma, W., Han, D., Gan, S., Dong, X., and Niu, L.: Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 27, 3767 (2015).CrossRefGoogle ScholarPubMed
Li, H., Bian, Z., Zhu, J., Huo, Y., Li, H., and Lu, Y.: Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J. Am. Chem. Soc. 129, 4538 (2007).CrossRefGoogle ScholarPubMed
Yan, W., Mahurin, S.M., Pan, Z., Overbury, S.H., and Dai, S.: Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals. J. Am. Chem. Soc. 127, 10480 (2005).CrossRefGoogle ScholarPubMed
Bian, Z., Tachikawa, T., Zhang, P., Fujitsuka, M., and Majima, T.: Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 136, 458 (2014).CrossRefGoogle ScholarPubMed
Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., and Gernjak, W.: Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 147, 1 (2009).CrossRefGoogle Scholar
Wang, X., He, Y., Cheng, G., Shi, L., Liu, X., and Zhu, J.: Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Convers. Manage. 130, 176 (2016).CrossRefGoogle Scholar
Ni, G., Miljkovic, N., Ghasemi, H., Huang, X., Boriskina, S.V., Lin, C-T., Wang, J., Xu, Y., Rahman, M.M., Zhang, T., and Chen, G.: Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 17, 290 (2015).CrossRefGoogle Scholar
Zhuang, S., Zhou, L., Xu, W., Xu, N., Hu, X., Li, X., Lv, G., Zheng, Q., Zhu, S., Wang, Z., and Zhu, J.: Tuning transpiration by interfacial solar absorber-leaf engineering. Adv. Sci. 5, 1700497 (2018).CrossRefGoogle ScholarPubMed
Xu, N., Hu, X., Xu, W., Li, X., Zhou, L., Zhu, S., and Zhu, J.: Mushrooms as efficient solar steam-generation devices. Adv. Mater. 29, 1606762 (2017).CrossRefGoogle ScholarPubMed
Li, X., Xu, W., Tang, M., Zhou, L., Zhu, B., Zhu, S., and Zhu, J.: Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. U. S. A. 113, 13953 (2016).CrossRefGoogle ScholarPubMed
Xu, W., Hu, X., Zhuang, S., Wang, Y., Li, X., Zhou, L., Zhu, S., and Zhu, J.: Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8, 1702884 (2018).CrossRefGoogle Scholar
Shi, L., Wang, Y., Zhang, L., and Wang, P.: Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. J. Mater. Chem. A 5, 16212 (2017).CrossRefGoogle Scholar
Wang, Y., Zhang, L., and Wang, P.: Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chem. Eng. 4, 1223 (2016).CrossRefGoogle Scholar
Jiang, F., Liu, H., Li, Y., Kuang, Y., Xu, X., Chen, C., Huang, H., Jia, C., Zhao, X., Hitz, E., Zhou, Y., Yang, R., Cui, L., and Hu, L.: Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl. Mater. Interfaces 10, 1104 (2018).CrossRefGoogle ScholarPubMed
Zhu, M., Li, Y., Chen, G., Jiang, F., Yang, Z., Luo, X., Wang, Y., Lacey, S.D., Dai, J., Wang, C., Jia, C., Wan, J., Yao, Y., Gong, A., Yang, B., Yu, Z., Das, S., and Hu, L.: Tree-inspired design for high-efficiency water extraction. Adv. Mater. 29, 1704107 (2017).CrossRefGoogle ScholarPubMed
Liu, H., Chen, C., Chen, G., Kuang, Y., Zhao, X., Song, J., Jia, C., Xu, X., Hitz, E., Xie, H., Wang, S., Jiang, F., Li, T., Li, Y., Gong, A., Yang, R., Das, S., and Hu, L.: High-performance solar steam device with layered channels: Artificial tree with a reversed design. Adv. Energy Mater. 8, 1701616 (2018).CrossRefGoogle Scholar
Li, T., Liu, H., Zhao, X., Chen, G., Dai, J., Pastel, G., Jia, C., Chen, C., Hitz, E., Siddhartha, D., Yang, R., and Hu, L.: Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport. Adv. Funct. Mater. 28, 1707134 (2018).CrossRefGoogle Scholar
Xue, G., Liu, K., Chen, Q., Yang, P., Li, J., Ding, T., Duan, J., Qi, B., and Zhou, J.: Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces 9, 15052 (2017).CrossRefGoogle ScholarPubMed
Guo, A., Fu, Y., Wang, G., and Wang, X.: Diameter effect of gold nanoparticles on photothermal conversion for solar steam generation. RSC Adv. 7, 4815 (2017).CrossRefGoogle Scholar
Wang, H., Miao, L., and Tanemura, S.: Morphology control of Ag polyhedron nanoparticles for cost-effective and fast solar steam generation. Sol. RRL 1, 1600023 (2017).CrossRefGoogle Scholar
Rahman, M.M., Younes, H., Ni, G., Lu, J.Y., Raza, A., Zhang, T.J., Fang, N.X., and Ghaferi, A.A.: Plasmonic nanofluids enhanced solar thermal transfer liquid. In American Institute of Physics Conference Series, Vol. 1850 (AIP Publishing LLC, 2017); p. 110013. Available at: https://aip.scitation.org/toc/apc/1850/1?expanded=1850.Google Scholar
Amjad, M., Raza, G., Xin, Y., Pervaiz, S., Xu, J., Du, X., and Wen, D.: Volumetric solar heating and steam generation via gold nanofluids. Appl. Energy 206, 393 (2017).CrossRefGoogle Scholar
Jin, H., Lin, G., Bai, L., Zeiny, A., and Wen, D.: Steam generation in a nanoparticle-based solar receiver. Nano Energy 28, 397 (2016).CrossRefGoogle Scholar
Zhao, D., Duan, H., Yu, S., Zhang, Y., He, J., Quan, X., Tao, P., Shang, W., Wu, J., Song, C., and Deng, T.: Enhancing localized evaporation through separated light absorbing centers and scattering centers. Sci. Rep. 5, 17276 (2015).CrossRefGoogle ScholarPubMed
Yu, S., Zhang, Y., Duan, H., Liu, Y., Quan, X., Tao, P., Shang, W., Wu, J., Song, C., and Deng, T.: The impact of surface chemistry on the performance of localized solar-driven evaporation system. Sci. Rep. 5, 13600 (2015).CrossRefGoogle ScholarPubMed
Liu, Y., Yu, S., Feng, R., Bernard, A., Liu, Y., Zhang, Y., Duan, H., Shang, W., Tao, P., Song, C., and Deng, T.: A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768 (2015).CrossRefGoogle ScholarPubMed
Wang, Z., Liu, Y., Tao, P., Shen, Q., Yi, N., Zhang, F., Liu, Q., Song, C., Zhang, D., Shang, W., and Deng, T.: Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small 10, 3234 (2014).CrossRefGoogle ScholarPubMed
Zhu, M., Li, Y., Chen, F., Zhu, X., Dai, J., Li, Y., Yang, Z., Yan, X., Song, J., Wang, Y., Hitz, E., Luo, W., Lu, M., Yang, B., and Hu, L.: Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8, 1701028 (2018).CrossRefGoogle Scholar
Chirumamilla, M., Chirumamilla, A., Yang, Y., Roberts, A.S., Kristensen, P.K., Chaudhuri, K., Boltasseva, A., Sutherland, D.S., Bozhevolnyi, S.I., and Pedersen, K.: Large‐area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars. Adv. Opt. Mater. 5, 1700552 (2017).CrossRefGoogle Scholar
Li, W., Guler, U., Kinsey, N., Naik, G.V., Boltasseva, A., Guan, J., Shalaev, V.M., and Kildishev, A.V.: Plasmonics: Refractory plasmonics with titanium nitride: Broadband metamaterial absorber. Adv. Mater. 26, 7921 (2014).CrossRefGoogle ScholarPubMed
Naik, G.V., Schroeder, J.L., Ni, X., Kildishev, A.V., Sands, T.D., and Boltasseva, A.: Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478 (2010).CrossRefGoogle Scholar
Gao, Y., Yuan, Z., and Gao, S.: Semiclassical approach to plasmon–electron coupling and Landau damping of surface plasmons. J. Chem. Phys. 134, 134702 (2011).CrossRefGoogle ScholarPubMed
Guler, U., Ndukaife, J.C., Naik, G.V., Nnanna, A.G., Kildishev, A.V., Shalaev, V.M., and Boltasseva, A.: Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles. Nano Lett. 13, 6078 (2013).CrossRefGoogle ScholarPubMed
Naik, G.V., Shalaev, V.M., and Boltasseva, A.: Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 25, 3264 (2013).CrossRefGoogle ScholarPubMed
Ishii, S., Sugavaneshwar, R.P., and Nagao, T.: Titanium nitride nanoparticles as plasmonic solar heat transducers. J. Phys. Chem. C 120, 2343 (2016).CrossRefGoogle Scholar
Kaur, M., Ishii, S., Shinde, S.L., and Nagao, T.: All-ceramic microfibrous solar steam generator: TiN plasmonic nanoparticle-loaded transparent microfibers. ACS Sustainable Chem. Eng. 5, 8523 (2017).CrossRefGoogle Scholar
Jaque, D., Martinez Maestro, L., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J.L., Martin Rodriguez, E., and Garcia Sole, J.: Nanoparticles for photothermal therapies. Nanoscale 6, 9494 (2014).CrossRefGoogle ScholarPubMed
Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377 (1908).CrossRefGoogle Scholar
Khlebtsov, B., Zharov, V., Melnikov, A., Tuchin, V., and Khlebtsov, N.: Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17, 5167 (2006).CrossRefGoogle Scholar
Chen, H., Shao, L., Ming, T., Sun, Z., Zhao, C., Yang, B., and Wang, J.: Understanding the photothermal conversion efficiency of gold nanocrystals. Small 6, 2272 (2010).CrossRefGoogle ScholarPubMed
Xia, Y.: Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 30, 338 (2005).CrossRefGoogle Scholar
Jiang, K., Smith, D.A., and Pinchuk, A.: Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J. Phys. Chem. C 117, 27073 (2013).CrossRefGoogle Scholar
Njoki, P.N., Lim, I.S., Mott, D., Park, H-Y., Khan, B., Mishra, S., Sujakumar, R., Luo, J., and Zhong, C.J.: Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C 111, 14664 (2007).CrossRefGoogle Scholar
Wang, J., Li, Y., Deng, L., Wei, N., Weng, Y., Dong, S., Qi, D., Qiu, J., Chen, X., and Wu, T.: High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29, 1603730 (2017).CrossRefGoogle Scholar
Guler, U., Kildishev, A., Boltasseva, A., and Shalaev, V.M.: Titanium nitride nanoparticles for therapeutic applications. In Lasers and Electro-optics (IEEE, 2014); p. 1. Available at: https://ieeexplore.ieee.org/document/6988486/.Google Scholar
Hogan, N.J., Urban, A.S., Ayala-Orozco, C., Pimpinelli, A., Nordlander, P., and Halas, N.J.: Nanoparticles heat through light localization. Nano Lett. 14, 4640 (2014).CrossRefGoogle ScholarPubMed
Govorov, A.O. and Richardson, H.H.: Generating heat with metal nanoparticles. Nano Today 2, 30 (2007).CrossRefGoogle Scholar
Fu, Y., Mei, T., Wang, G., Guo, A., Dai, G., Wang, S., Wang, J., Li, J., and Wang, X.: Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids. Appl. Therm. Eng. 114, 961 (2017).CrossRefGoogle Scholar
Ma, B. and Banerjee, D.: A review of nanofluid synthesis. In Advances in Nanomaterials, Balasubramanian, G., ed. (Springer, Cham, 2018); pp. 135176.CrossRefGoogle Scholar
Wang, Y., Wang, C., Song, X., Megarajan, S.K., and Jiang, H.: A facile nanocomposite strategy to fabricate a rGO–MWCNT photothermal layer for efficient water evaporation. J. Mater. Chem. A 6, 963971 (2017).CrossRefGoogle Scholar
Yu, L., Ruan, S., Xu, X., Zou, R., and Hu, J.: One-dimensional nanomaterial-assembled macroscopic membranes for water treatment. Nano Today 17, 79 (2017).CrossRefGoogle Scholar
Li, J., Jia, H., Lin, J., Luo, H., Liu, Z., Xu, X., Huang, Y., Jin, P., Zhang, J., and Abbas, S.: Free-standing membranes made of activated boron nitride for efficient water cleaning. RSC Adv. 5, 71537 (2015).CrossRefGoogle Scholar
Wang, X., He, Y., Liu, X., and Zhu, J.: Enhanced direct steam generation via a bio-inspired solar heating method using carbon nanotube films. Powder Technol. 321, 276 (2017).CrossRefGoogle Scholar
Guo, Z., Ming, X., Wang, G., Hou, B., Liu, X., Mei, T., Li, J., Wang, J., and Wang, X.: Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination. Semicond. Sci. Technol. 33, 025008 (2018).CrossRefGoogle Scholar
Kelf, T.A., Sugawara, Y., Cole, R.M., Baumberg, J.J., Abdelsalam, M.E., Cintra, S., Mahajan, S., Russell, A.E., and Bartlett, P.N.: Localized and delocalized plasmons in metallic nanovoids. Phys. Rev. B 74, 245415 (2006).CrossRefGoogle Scholar
Batchelor, G.K.: An introduction to fluid dynamics. Int. J. Heat Mass Transfer 11, 1213 (1968).Google Scholar
Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.M., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., and Unger, K.K.: Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 66, 1739 (2009).CrossRefGoogle Scholar
Liu, K.K., Jiang, Q., Tadepalli, S., Raliya, R., Biswas, P., Naik, R.R., and Singamaneni, S.: Wood-Graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl. Mater. Interfaces 9, 7675 (2017).CrossRefGoogle ScholarPubMed
Jiang, Q. and Singamaneni, S.: Water from wood: Pouring through pores. Joule 1, 429 (2017).CrossRefGoogle Scholar
Jia, C., Li, Y., Yang, Z., Chen, G., Yao, Y., Jiang, F., Kuang, Y., Pastel, G., Xie, H., Yang, B., Das, S., and Hu, L.: Rich mesostructures derived from natural woods for solar steam generation. Joule 1, 588 (2017).CrossRefGoogle Scholar
Fang, J., Liu, Q., Zhang, W., Gu, J., Su, Y., Su, H., Guo, C., and Zhang, D.: Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. J. Mater. Chem. A 5, 17817 (2017).CrossRefGoogle Scholar
Wang, G., Fu, Y., Guo, A., Mei, T., Wang, J., Li, J., and Wang, X.: Reduced graphene oxide–polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation. Chem. Mater. 29, 5629 (2017).CrossRefGoogle Scholar
Ma, S., Chiu, C.P., Zhu, Y., Tang, C.Y., Long, H., Qarony, W., Zhao, X., Zhang, X., Lo, W.H., and Tsang, Y.H.: Recycled waste black polyurethane sponges for solar vapor generation and distillation. Appl. Energy 206, 63 (2017).CrossRefGoogle Scholar
Li, R., Zhang, L., Shi, L., and Wang, P.: MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 11, 3752 (2017).CrossRefGoogle ScholarPubMed
Supplementary material: File

Bian et al. supplementary material

Bian et al. supplementary material 1

Download Bian et al. supplementary material(File)
File 4.8 MB