Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T00:08:58.825Z Has data issue: false hasContentIssue false

Preparation and characterization of electrospun silk fibroin/sericin blend fibers

Published online by Cambridge University Press:  11 November 2011

Yichun Hang
Affiliation:
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
Yaopeng Zhang
Affiliation:
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
Yuan Jin
Affiliation:
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
Huili Shao*
Affiliation:
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
Xuechao Hu
Affiliation:
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: hlshao@dhu.edu.cn
Get access

Abstract

In this work, the silk fibroin/sericin (SF/SS) blend aqueous solutions with different SF/SS mass ratios (100/0, 90/10, 85/15, 75/25, and 65/35) were prepared and electrospun to get regenerated fibers. It was found that the addition of SS in the SF solution could increase the apparent viscosity of the solution and improve its electrospinnability so that the fine uniform electrospun SF/SS fibers could be obtained. The quantitative analysis result of Raman spectroscopy showed that the presence of SS facilitated the conformational transition of SF from random coil/α-helix structure to β-sheet structure. Combined with the differential scanning calorimetry result, it was further hypothesized that SS could affect the structural change of SF by dehydrating SF and inducing the formation of hydrogen bonds between SF molecules. Consequently, SS also played an important and positive role in the thermal and mechanical properties of the resultant SF/SS fibers.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Vollrath, F. and Knight, D.P.: Liquid crystalline spinning of spider silk. Nature 410, 541 (2001).Google Scholar
2.Shao, Z.Z. and Vollrath, F.: Surprising strength of silkworm silk. Nature 418, 741 (2002).Google Scholar
3.Tirrell, D.A.: Putting a new spin on spider silk. Science 271, 39 (1996).Google Scholar
4.Li, X.G., Wu, L.Y., Huang, M.R., Shao, H.L., and Hu, X.C.: Conformational transition and liquid crystalline state of regenerated silk fibroin in water. Biopolymers 89, 497 (2008).CrossRefGoogle ScholarPubMed
5.Zhou, G.Q., Chen, X., and Shao, Z.Z.: The artificial spinning based on silk proteins. Prog. Chem. 18, 933 (2006).Google Scholar
6.Khan, M.M.R., Morikawa, H., Gotoh, Y., Miura, M., Ming, Z., Sato, Y., and Iwasa, M.: Structural characteristics and properties of Bombyx mori silk fiber obtained by different artificial forcibly silking speeds. Int. J. Biol. Macromol. 42, 264 (2008).Google Scholar
7.Perez-Rigueiro, J., Biancotto, L., Corsini, P., Marsano, E., Elices, M., Plaza, G.R., and Guinea, G.V.: Supramolecular organization of regenerated silkworm silk fibers. Int. J. Biol. Macromol. 44, 195 (2009).Google Scholar
8.Lee, K.H., Baek, D.H., Ki, C.S., and Park, Y.H.: Preparation and characterization of wet spun silk fibroin/poly(vinyl alcohol) blend filaments. Int. J. Biol. Macromol. 41, 168 (2007).Google Scholar
9.Ha, S.W., Tonelli, A.E., and Hudson, S.M.: Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules 6, 1722 (2005).Google Scholar
10.Marsano, E., Corsini, P., Arosio, C., Boschi, A., Mormino, M., and Freddi, G.: Wet spinning of Bombyx mori silk fibroin dissolved in N-methyl morpholine N-oxide and properties of regenerated fibres. Int. J. Biol. Macromol. 37, 179 (2005).Google Scholar
11.Yao, J.M., Masuda, H., Zhao, C.H., and Asakura, T.: Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate. Macromolecules 35, 6 (2002).Google Scholar
12.Ayutsede, J., Gandhi, M., Sukigara, S., Micklus, M., Chen, H.E., and Ko, F.: Regeneration of Bombyx mori silk by electrospinning. Part 3: Characterization of electrospun nonwoven mat. Polymer 46, 1625 (2005).Google Scholar
13.Bao, W.W., Zhang, Y.Z., Yin, G.B., and Wu, J.L.: The structure and property of the electrospinning silk fibroin/gelatin blend nanofibers. E-Polymers Art. 98 (2008).Google Scholar
14.Chen, C., Cao, C.B., Ma, X.L., Tang, Y., and Zhu, H.S.: Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method. Polymer 47, 6322 (2006).Google Scholar
15.Ohgo, K., Zhao, C.H., Kobayashi, M., and Asakura, T.: Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method. Polymer 44, 841 (2003).Google Scholar
16.Martel, A., Burghammer, M., Davies, R., DiCola, E., Panine, P., Salmon, J.B., and Riekel, C.: A microfluidic cell for studying the formation of regenerated silk by synchrotron radiation small- and wide-angle X-ray scattering. Biomicrofluidics 2, 024104 (2008).Google Scholar
17.Lee, K.H.: Silk sericin retards the crystallization of silk fibroin. Macromol. Rapid Commun. 25, 1792 (2004).Google Scholar
18.Ki, C.S., Kim, J.W., Oh, H.J., Lee, K.H., and Park, Y.H.: The effect of residual silk sericin on the structure and mechanical property of regenerated silk filament. Int. J. Biol. Macromol. 41, 346 (2007).CrossRefGoogle Scholar
19.Kawahara, Y., Nakayama, A., Matsumura, N., Yoshioka, T., and Tsuji, M.: Structure for electro-spun silk fibroin nanofibers. J. Appl. Polym. Sci. 107, 3681 (2008).Google Scholar
20.Zhu, J.X., Zhang, Y.P., Shao, H.L., and Hu, X.C.: Electrospinning and rheology of regenerated Bombyx mori silk fibroin aqueous solutions: The effects of pH and concentration. Polymer 49, 2880 (2008).Google Scholar
21.Zhang, F., Zuo, B.Q., Zhang, H.X., and Bai, L.: Studies of electrospun regenerated SF/TSF nanofibers. Polymer 50, 279 (2009).Google Scholar
22.Li, C.M., Vepari, C., Jin, H.J., Kim, H.J., and Kaplan, D.L.: Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27, 3115 (2006).Google Scholar
23.Li, C.M., Jin, H.J., Botsaris, G.D., and Kaplan, D.L.: Silk apatite composites from electrospun fibers. J. Mater. Res. 20, 3374 (2005).Google Scholar
24.Unger, R.E., Peters, K., Wolf, M., Motta, A., Migliaresi, C., and Kirkpatrick, C.J.: Endothelialization of a non-woven silk fibroin net for use in tissue engineering: Growth and gene regulation of human endothelial cells. Biomaterials 25, 5137 (2004).Google Scholar
25.Schneider, A., Wang, X.Y., Kaplan, D.L., Garlick, J.A., and Egles, C.: Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound heating. Acta Biomater. 5, 2570 (2009).Google Scholar
26.Zhu, J.X., Shao, H.L., and Hu, X.C.: Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH. Int. J. Biol. Macromol. 41, 469 (2007).Google Scholar
27.Zhou, L., Chen, X., Shao, Z.Z., Huang, Y.F., and Knight, D.P.: Effect of metallic ions on silk formation the mulberry silkworm, Bombyx mori. J. Phys. Chem. B 109, 16937 (2005).Google Scholar
28.Zhou, P., Xie, X., Deng, F., Ping, Z., Xun, X., and Feng, D.: Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and C-13 solid-state NMR. Biochemistry 43, 11302 (2004).Google Scholar
29.Colomban, P., Dinh, H.M., Riand, J., Prinsloo, L.C., and Mauchamp, B.: Nanomechanics of single silkworm and spider fibres: A Raman and micro-mechanical in situ study of the conformation change with stress. J. Raman Spectrosc. 39, 1749 (2008).Google Scholar
30.Subbiah, T., Bhat, G.S., Tock, R.W., Pararneswaran, S., and Ramkumar, S.S.: Electrospinning of nanofibers. J. Appl. Polym. Sci. 96, 557 (2005).Google Scholar
31.Chen, X., Knight, D.P., and Vollrath, F.: Rheological characterization of Nephila spidroin solution. Biomacromolecules 3, 644 (2002).Google Scholar
32.Teramoto, H., Kameda, T., and Tamada, Y.: Preparation of gel film from Bombyx mori silk sericin and its characterization as a wound dressing. Biosci. Biotechnol. Biochem. 72, 3189 (2008).Google Scholar
33.Foo, C.W.P., Bini, E., Hensman, J., Knight, D.P., Lewis, R.V., and Kaplan, D.L.: Role of pH and charge on silk protein assembly in insects and spiders. Appl. Phys. A 82, 223 (2006).Google Scholar
34.Cao, C.B., Zhou, J.A., Ma, X.L., and Lin, J.: Electrospinning of silk fibroin and collagen for vascular tissue engineering. Int. J. Biol. Macromol. 47, 514 (2010).Google Scholar
35.Monti, P., Freddi, G., Bertoluzza, A., Kasai, N., and Tsukada, M.: Raman spectroscopic studies of silk fibroin from Bombyx mori. J. Raman Spectrosc. 29, 297 (1998).Google Scholar
36.Monti, P., Taddei, P., Freddi, G., Asakura, T., and Tsukada, M.: Raman spectroscopic characterization of Bombyx mori silk fibroin: Raman spectrum of Silk I. J. Raman Spectrosc. 32, 103 (2001).Google Scholar
37.Motta, A., Fambri, L., and Migliaresi, C.: Regenerated silk fibroin films: Thermal and dynamic mechanical analysis. Macromol. Chem. Phys. 203, 1658 (2002).Google Scholar
38.Tanaka, T., Kobayashi, M., Inoue, S.I., Tsuda, H., and Magoshi, J.: Biospinning: Change of water contents in drawn silk. J. Polym. Sci., Part B: Polym. Phys. 41, 274 (2003).Google Scholar