Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-17T09:59:40.231Z Has data issue: false hasContentIssue false

Preparation, ion-exchange, and electrochemical behavior of Cs-type manganese oxides with a novel hexagonal-like morphology

Published online by Cambridge University Press:  31 January 2011

Zong-Huai Liu*
Affiliation:
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
Liping Kang
Affiliation:
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
Mingzhu Zhao
Affiliation:
School of Science, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Kenta Ooi
Affiliation:
National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
*
a)Address all correspondence to this author. e-mail: zhliu@snnu.edu.cn
Get access

Abstract

Cs-type layered manganese oxide with a novel hexagonal-like morphology (Cs–BirMO) was prepared by a solid-state reaction procedure. The Cs+ extraction and alkali–metal ion insertion reactions were investigated by chemical analyses, x-ray analyses, scanning electron microscopy observation, Fourier transform-infrared spectroscopy, thermogravimetric differential thermal analyses, pH titration, and distribution coefficient (Kd) measurements. A considerable percentage (88%) of Cs+ ions in the interlayer sites were topotactically extracted by acid treatment, accompanied by a slight change of the lattice parameters. Alkali–metal ions could be inserted into the interlayer of the acid-treated sample (H–BirMO), mainly by an ion-exchange mechanism. The pH titration curve of the H–BirMO sample showed a simple monobasic acid toward Li+, Rb+, and Cs+ ions, and dibasic acid behavior toward Na+ and K+ ions. The order of the apparent capacity was K+ > Li+ ≈ Na+ ≈ Rb+ ≈ Cs+ at pH < 6. The Kd study showed the selectivity sequence of K+ > Rb+ > Na+ > Li+ for alkali–metal ions at the range of pH <5; H–BirMO sample showed markedly high selectivity for the adsorption of K+ ions. Preliminary investigations of the electrochemical properties of the Li+-inserted sample Li–BirMO(1M, 6d) showed that the obtained samples had a relatively high discharge capacity of 115 mAh g−1 and excellent layered stability.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mizushima, K., Jones, P.C., Wiseman, P.J.Goodenough, J.B.: LixCoO2 (0 < x < −1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783 1980CrossRefGoogle Scholar
2Dahn, J.R., Von Sacken, U., Jukow, M.R.Al-Janaby, H.: Rechargeable LiNiO2/carbon cells. J. Electrochem. Soc. 138, 2207 1991CrossRefGoogle Scholar
3Ammundsen, B.Paulsen, J.: Novel lithium-ion cathode materials based on layered manganese oxides. Adv. Mater. 13, 943 20013.0.CO;2-J>CrossRefGoogle Scholar
4Alcantara, R., Lavela, P., Tirado, J.L., Stoyanova, R., Kuzmanova, E.Zhecheva, E.: Lithium-nickel citrate precursors for the preparation of LiNiO2 insertion electrodes. Chem. Mater. 9, 2145 1997CrossRefGoogle Scholar
5Wu, M-S., Chiang, P-C.J., Lee, J-T.Lin, J-C.: Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. J. Phys. Chem. B 109, 23279 2005CrossRefGoogle ScholarPubMed
6Feng, Q., Kanoh, H.Ooi, K.: Manganese oxide porous crystals. J. Mater. Chem. 9, 319 1999CrossRefGoogle Scholar
7Shen, Y.F., Zerger, R.P., DeGuzman, R.N., Suib, S.L., McCurdy, L., Potter, D.I.O’Young, C.L.: Manganese oxide octahedral molecular sieves: Preparation, characterization, and applications. Science 260, 511 1993CrossRefGoogle ScholarPubMed
8Armstrong, A.R., Dupre, N., Paterson, A.J., Grey, C.P.Bruce, P.G.: Combined neutron diffraction, NMR, and electrochemical investigation of the layered-to-spinel transformation in LiMnO2. Chem. Mater. 16, 3106 2004CrossRefGoogle Scholar
9Kanoh, H., Tang, W., Makita, Y.Ooi, K.: Electrochemical intercalation of alkali–metal ions into birnessite-type manganese oxide in aqueous solution. Langmuir 13, 6845 1997CrossRefGoogle Scholar
10Leroux, F., Guyomard, D.Piffard, Y.: The 2D rancieite-type manganic acid and its alkali-exchanged derivatives: Part I. Chemical characterization and thermal behavior. Solid State Ionics 80, 299 1995CrossRefGoogle Scholar
11Robertson, A.D., Armstrong, A.R.Bruce, P.G.: Layered LixMn1-yCoyO2 intercalation electrodes-influence of ion exchange on capacity and structure upon cycling. Chem. Mater. 13, 2380 2001CrossRefGoogle Scholar
12Armstrong, A.R.Bruce, P.G.: Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499 1996CrossRefGoogle Scholar
13Chen, R., Chirayil, T., Zavalij, P.Whittingham, M.S.: The hydrothermal synthesis of sodium manganese oxide and a lithium vanadium oxide. Solid State Ionics 86, 1 1996CrossRefGoogle Scholar
14Feng, Q., Sun, E-H., Yamagisawa, K.Yamasaki, N.: Synthesis of birnessite-type sodium manganese oxides by solution reaction and hydrothermal methods. J. Ceram. Soc. Jpn. 105, 564 1997CrossRefGoogle Scholar
15Yang, D.S.Wang, M.K.: Syntheses and characterization of well-crystallized birnessite. Chem. Mater. 13, 2589 2001CrossRefGoogle Scholar
16Yang, X., Tang, W., Feng, Q.Ooi, K.: Single crystal growth of birnessite- and hollandite-type manganese oxides by a flux method. Cryst. Growth Des. 3, 409 2003Google Scholar
17Cai, J., Liu, J.Suib, S.L.: Preparative parameters and framework dopant effects in the synthesis of layer-structure birnessite by air oxidation. Chem. Mater. 14, 2071 2002Google Scholar
18Aronson, B.J., Kinser, A.K., Passerini, S., Smyrl, W.H.Stein, A.: Synthesis, characterization, and electrochemical properties of magnesium birnessite and zinc chalcophanite prepared by a low-temperature route. Chem. Mater. 11, 949 1999Google Scholar
19Liu, Z-H., Ooi, K., Kanoh, H., Tang, W.Tomida, T.: Swelling and delamination behaviors of birnessite-type manganese oxide by intercalation of tetraalkylammonium ions. Langmuir 16, 4154 2000CrossRefGoogle Scholar
20Gaillot, A-C., Flot, D., Drits, V.A., Manceau, A., Burghammer, M.Lanson, B.: Structure of synthetic K-rich birnessite obtained by high-temperature decomposition of KMnO4: I. Two-layer polytype from 800 °C experiment. Chem. Mater. 15, 4666 2003Google Scholar
21Ching, S., Petrovay, D.J., Jorgensen, M.L.Suib, S.L.: Sol-gel synthesis of layered birnessite-type manganese oxides. Inorg. Chem. 36, 883 1997Google Scholar
22Dollé, M., Patoux, S.Doeff, M.M.: Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: 1. Substitution with Co or Ni. Chem. Mater. 17, 1036 2005CrossRefGoogle Scholar
23Patoux, S., Dollé, M.Doeff, M.M.: Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: 2. Substitution with Al. Chem. Mater. 17, 1044 2005CrossRefGoogle Scholar
24Liu, Z-H., Ooi, K., Kanoh, H., Tang, W., Yang, X.Tomida, T.: Synthesis of thermally stable silica-pillared layered manganese oxide by an intercalation/solvothermal reaction. Chem. Mater. 13, 473 2001Google Scholar
25Eriksson, T.A., Lee, Y.J., Hollingsworth, J., Reimer, J.A., Cairns, E.J., Zhang, X-F.Doeff, M.M.: Influence of substitution on the structure and electrochemistry of layered manganese oxides. Chem. Mater. 15, 4456 2003Google Scholar
26Xu, Y., Feng, Q., Kajiyashi, K., Yanagisawa, K., Yang, X., Makita, Y., Kasaishi, S.Ooi, K.: Hydrothermal syntheses of layered lithium nickel manganese oxides from mixed layered Ni(OH)2-manganese oxides. Chem. Mater. 14, 3844 2002CrossRefGoogle Scholar
27Feng, Q., Xu, Y., Kajiyoshi, K.Yanagisawa, K.: Hydrothermal soft chemical synthesis of Ni(OH)2-birnessite sandwich layered compound and layered LiNi1/3Mn2/3O2. Chem. Lett. (Jpn.) 30, 1036 2001CrossRefGoogle Scholar
28Omomo, Y., Sasaki, T., Wang, L.Z.Watanabe, M.: Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 125, 3568 2003Google Scholar
29Japan Industrial Standard (JIS)Japan Industrial Standard Committee,1969 M8233Google Scholar
30JCPDS Nos. 26-0390, 23-1046, 24-734 18-804. International Center for Diffraction Data Newton Square, PA, 2004Google Scholar
31Luo, J., Zhang, Q.Suib, S.L.: Mechanistic and kinetic studies of crystallization of birnessite. Inorg. Chem. 39, 741 2000CrossRefGoogle ScholarPubMed
32Kim, S.H., Kim, S.J.Oh, S.M.: Preparation of layered MnO2 via thermal decomposition of KMnO4 and its electrochemical characterizations. Chem. Mater. 11, 557 1999CrossRefGoogle Scholar
33Goff, P. Le, Baffier, N., Bach, S., Pereira-Ramos, J-P.Messina, R.: Structural and electrochemical properties of layered manganese dioxides in relation to their synthesis, classical and sol-gel routes. J. Mater. Chem. 4, 875 1994CrossRefGoogle Scholar
34Parant, J-P., Olazcuga, R., Devalette, M., Fouassier, C.Hagenmuller, P.: Synthesis of layered and tunnel layered sodium manganese oxides. J. Solid State Chem. 3, 1 1971CrossRefGoogle Scholar
35Luo, J., Huang, A., Park, S.H., Suib, S.L.O’Young, C-L.: Crystallization of sodium-birnessite and accompanied phase transformation. Chem. Mater. 10, 1561 1998CrossRefGoogle Scholar
36Ooi, K., Miyai, Y.Sakakihara, J.: Mechanism of lithium(1+) insertion in spinel-type manganese oxide: Redox and ion-exchange reactions. Langmuir 7, 1167 1991Google Scholar
37Ooi, K., Miyai, Y., Katoh, S., Maeda, H.Abe, M.: Topotactic lithium(1+) insertion to λ-manganese dioxide in the aqueous phase. Langmuir 5, 150 1989CrossRefGoogle Scholar
38Feng, Q., Kanoh, H., Miyai, Y.Ooi, K.: Hydrothermal synthesis of lithium and sodium manganese oxides and their metal ion extraction/insertion reactions. Chem. Mater. 7, 1226 1995Google Scholar
39Liu, Z-H.Ooi, K.: Preparation and alkali–metal ion extraction/insertion reactions with nanofibrous manganese oxide having 2 × 4 tunnel structure. Chem. Mater. 15, 3696 2003CrossRefGoogle Scholar
40Feng, Q., Miyai, Y., Kanoh, H.Ooi, K.: Lithium(1+) extraction/insertion with spinel-type lithium manganese oxides: Characterization of redox-type and ion-exchange-type sites. Langmuir 8, 1861 1992Google Scholar
41Tsuji, M.Komarneni, S.: Selective exchange of divalent transition metal ions in cryptomelane–type manganic acid with tunnel structure. J. Mater. Res. 8, 611 1993Google Scholar
42Hunter, J.C.: Preparation of a new crystal form of manganese dioxide: λ-MnO2. J. Solid State Chem. 39, 142 1981CrossRefGoogle Scholar
43Kanzaki, Y., Taniguchi, A.Abe, M.: Mechanism of lithium ion insertion into λ-MnO2. J. Electrochem. Soc. 138, 333 1991CrossRefGoogle Scholar
44Feng, Q., Kanoh, H., Miyai, Y.Ooi, K.: Alkali metal ions insertion/extraction reactions with hollandite-type manganese oxide in the aqueous phase. Chem. Mater. 7, 148 1995Google Scholar
45Miyai, Y., Ooi, K.Katoh, S.: Preparation and ion-exchange properties of ion-sieve manganese oxide based on Mg2MnO4. J. Colloid Interface Sci. 130, 535 1989CrossRefGoogle Scholar
46Nyguist, R.A.Kagel, R.O.: Infrared Spectra of Inorganic Compounds Academic Press New York and London 1971 3Google Scholar
47Burns, R.G.Burns, V.M.: In Proceedings of the Manganese Dioxide Symposium Vol. 2 edited by B. Schumm, H.M. Joseph, and A. Kozawa Tokyo 1980 97Google Scholar
48Shen, X.M.Clearfield, A.: Phase transitions and ion exchange behavior of electrolytically prepared manganese dioxide. J. Solid State Chem. 64, 270 1986Google Scholar
49Golden, D.C., Chen, C.C.Dixon, J.B.: Transformation of birnessite to buserite, todorokite, and manganite under mild hydrothermal treatment. Clays Clay Miner. 35, 271 1987Google Scholar
50Golden, D.C., Chen, C.C.Dixon, J.B.: Synthesis of todorokite. Science 231, 717 1986Google Scholar
51Shannon, R.D.Prewitt, C.T.: Effective ionic radii in oxides and fluorides. Acta Crystallogr., Sect. B 25, 925 1969Google Scholar
52Dollé, M., Hollingsworth, J., Richardson, T.J.Doeff, M.M.: Investigation of layered intergrowth LixMyMn1–yO2 + z (M = Ni, Co, Al) compounds as positive electrodes for Li-ion batteries. Solid State Ionics 175, 225 2004Google Scholar
53Chen, R., Zavalij, P.Whittingham, M.S.: Hydrothermal synthesis and characterization of KxMnO2·yH2O. Chem. Mater. 8, 1275 1996Google Scholar
54Lu, Y., Wei, M., Wang, Z., Evans, D.G.Duan, X.: Characterization of structure and electrochemical properties of lithium manganese oxides for lithium secondary batteries hydrothermally synthesized from δ-KxMnO2. Electrochim. Acta 49, 2361 2004CrossRefGoogle Scholar