Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-11T01:04:23.389Z Has data issue: false hasContentIssue false

Spectroscopic study of a cryptomelane-type manganic acid exchanged by divalent transition-metal cations

Published online by Cambridge University Press:  31 January 2011

Masamichi Tsuji
Affiliation:
Research Center for Carbon Recycling and Utilization, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
Yasuo Tanaka
Affiliation:
Tobacco Science Research Laboratory, Japan Tobacco Inc., 6-2, Umegaoka, Aoba-ku, Yokohama 227-8512, Japan
Get access

Abstract

A cryptomelane-type manganic acid (CMA) exchanged by divalent transition-metal cations was studied by means of x-ray diffraction, electron microscopic observation, electron spin resonance, infrared spectra, and electron spectroscopy for chemical analysis. Especially the last three techniques were decisive for the chemical speciation of manganese oxide systems. The findings clearly eliminated a redox process as the principal process for cation uptake in the α–MnO2 phase. Transition-metal cations are stoichiometrically exchanged on this material on an equivalent basis similarly with alkali and alkaline-earth metal cations, except Fe2+. The last ion is oxidized to Fe3+ through a redox reaction with Mn3+ in the a–MnO2. The CMA is a mixed-valence compound represented by H2Mn2IIIMn6IVO16 2.3H2O. Two moles of tunnel protons are exchangeable to give 2.70 mequiv/g for the calculated ion-exchange capacity.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tsuji, M. and Abe, M., Solvent Extr. Ion Exch. 2, 253 (1984).CrossRefGoogle Scholar
2.Byström, A. and Byström, A.M., Acta Crystallogr. 3, 146 (1950).CrossRefGoogle Scholar
3.Tsuji, M. and Abe, M., Bull. Chem. Soc. Jpn. 58, 1109 (1985).CrossRefGoogle Scholar
4.Tsuji, M., Komarneni, S., Tamaura, Y., and Abe, M., Mater. Res. Bull. 27, 741 (1992).CrossRefGoogle Scholar
5.Tsuji, M. and Komarneni, S., J. Mater. Res. 8, 611 (1993).CrossRefGoogle Scholar
6.Tsuji, M., Matsunami, J., and Tamaura, Y., in Load Uptake by 2 × 2 Type Tunnel Structured Mangamic Acid, edited by Ooya, H. (Japan Association of Ion Exchange, Tokyo, Japan, 1999), p. 30.Google Scholar
7.Tanaka, Y., Tsuji, M., and Tamaura, Y., Phys. Chem. Chem. Phys. 2, 1473 (2000).CrossRefGoogle Scholar
8.Sato, H., Yamaura, J., Enoki, T., and Yamamoto, N., J. Alloys Compd. 262/263, 443 (1997).CrossRefGoogle Scholar
9.Sato, H., Enoki, T., Yamaura, J., and Yamamoto, N., Phys. Rev. B 59, 12836 (1999).CrossRefGoogle Scholar
10.Feng, Q., Kanoh, H., and Ooi, K., J. Ion Exch. 8, 102 (1997).CrossRefGoogle Scholar
11.Feng, Q., Kanoh, H., Miyai, Y., and Ooi, K., Chem. Mater. 7, 148 (1995).CrossRefGoogle Scholar
12.Feng, Q., Kanoh, H., and Ooi, K., J. Mater. Chem. 9, 319 (1999).CrossRefGoogle Scholar
13.Arrhenius, G., Cheung, K., Fisk, M., Frazer, J., Korkisch, J., Mellin, T., Nakao, S., Tsai, A., and Wolf, G., Counterions in Marine Manganates, in La genese des nodules de manganese, edited by Lalou, C. (Colloques International Centre National de la Recherché Scientifique, Paris, 1979), No. 289, pp. 333356.Google Scholar
14.Crane, S., Ion Exchange in Marine Manganates, Eos 60, 22 (1979).Google Scholar
15.Manceau, A., Charlet, L., Boisset, M.C., Didier, B., and Spadini, L., Appl. Clay Sci. 7, 201 (1992).CrossRefGoogle Scholar
16.McKenzie, R.M., Geochim. Cosmochim. Acta 43, 1855 (1979).CrossRefGoogle Scholar
17.Balistrieri, L.S. and Murray, J.W., Geochim. Cosmochim. Acta 46, 1041 (1982).CrossRefGoogle Scholar
18.Tsuji, M., Komarneni, S., Tamaura, Y., and Abe, M., Mater. Res. Bull. 27, 741 (1992).CrossRefGoogle Scholar
19.McBreen, J., Mukerjee, S., and Yang, X.Q., Synchrotron Radiation News 11 (3), 18 (1998).CrossRefGoogle Scholar
20.Bentley, F.F., Smithson, L.D., and Rozek, A.L., Infrared Spectra and Characteristic Frequencies 700–300cm−1 (Wiley Interscience, New York, 1968).Google Scholar
21.Nakamoto, K., Infrared Spectra of Inorganic and Coordination Compounds (Wiley Interscience, New York, 1963).Google Scholar
22.McDevitt, N.T. and Baun, W.L., Spectrochim. Acta 20, 799 (1964).CrossRefGoogle Scholar
23.Povarennykh, A.S., Am. Mineral. 63, 956 (1978).Google Scholar
24.Glemser, O., Gattow, G., and Meisier, H., Z. Anorg. Allg. Chem. 309, 1 (1961).CrossRefGoogle Scholar
25.Gattow, G. and Glemser, O., Z. Anorg. Allg. Chem. 309, 20 (1961).CrossRefGoogle Scholar
26.Gattow, G. and Glemser, O., Z. Anorg. Allg. Chem., 309, 121 (1961).CrossRefGoogle Scholar
27.Kolta, G.A., Kerim, F.M.A., and Azim, A.A.A., Z. Anorg. Allg. Chem. 384, 260 (1971).CrossRefGoogle Scholar
28.Nyquist, R.A. and Kagel, R.O., Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts (Academic Press, San Diego, 1997).Google Scholar
29.Potter, R.M. and Rossman, G.R., Am. Mineral. 64, 1199 (1979).Google Scholar
30.Potter, R.M. and Rossman, G.R., Am. Mineral. 64, 1219 (1979).Google Scholar
31.Miura, H., Takeda, Y., and Hariya, Y., Mineral. Mag. 16, 437 (1984).Google Scholar
32.Tsuji, M. and Abe, M., Annual Report of Tokyo Institute of Tech nology Radioisotope Laboratory, Tokyo, July 1985,p.46.Google Scholar
33.Evans, J.V. and Whateley, T.L., Trans. Faraday Soc. 63, 2769 (1967).CrossRefGoogle Scholar
34.Thornton, E.W. and Harrison, P.G., J. Chem. Soc. Faraday Trans. I 71, 461 (1975).CrossRefGoogle Scholar
35.Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Hand book of X-ray Photoelectron Spectroscopy (Physical Electronics, Eden Prairie, MN 1995).Google Scholar