Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-10-31T23:30:08.415Z Has data issue: false hasContentIssue false

Structural origin of the pinpoint-composition effect on the glass-forming ability in the NiNb alloy system

Published online by Cambridge University Press:  06 November 2013

Liang Yang*
Affiliation:
Department of Nuclear Science and Engineering, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
Xiang-fei Meng
Affiliation:
Department of Nuclear Science and Engineering, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
Gu-qing Guo
Affiliation:
Department of Nuclear Science and Engineering, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: yangliang@nuaa.edu.cn
Get access

Abstract

Great research efforts to investigate the glass-forming ability (GFA) in alloys have been made, leading to an observation that a pinpoint composition produces the best glass-forming characteristics. The reason for this observation is still unknown, limiting the development of bulk metallic glasses (MGs) with a relatively large size. In this work, systematic experimental measurements coupled with calculations were performed to address this issue using the NiNb binary alloy system. It is found that the atomic-level packing efficiency and the clusters-level regularity parameters strongly contribute to their GFA. In particular, the best glass former found in a pinpoint composition possesses the local maximum of the atomic-packing efficiency and the highest degree of the cluster regularity. This work provides an understanding of GFA from atomic and cluster levels and will shed light on the development of more MGs with relatively large critical casting sizes.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Klement, W., Willens, R.H., and Duwez, P.: Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960).CrossRefGoogle Scholar
Turnbull, D.: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
Greer, A.L.: Confusion by design. Nature 366, 303 (1993).CrossRefGoogle Scholar
Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
Lu, Z.P., Tan, H., Li, Y., and Ng, S.C.: The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scr. Mater. 42, 667 (2000).CrossRefGoogle Scholar
Lu, Z.P. and Liu, C.T.: Glass formation criterion for various glass-forming systems. Phys. Rev. Lett. 91, 115505 (2003).CrossRefGoogle ScholarPubMed
Yuan, Z.Z., Bao, S.L., Lu, Y., Zhang, D.P., and Yao, L.: A new criterion for evaluating the glass-forming ability of bulk glass forming alloys. J. Alloys Compd. 459, 251 (2008).CrossRefGoogle Scholar
Xu, D.H., Lohwongwatana, B., Duan, G., Johnson, W.L., and Garland, C.: Bulk metallic glass formation in binary Cu-rich alloy series - Cu100-xZrx (x=34, 36 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 (2004).CrossRefGoogle Scholar
Xia, L., Li, W.H., Fang, S.S., Wei, B.C., and Dong, Y.D.: Binary Ni–Nb bulk metallic glasses. J. Appl. Phys. 99, 026103 (2006).CrossRefGoogle Scholar
Inoue, A. and Zhang, W.: Formation, thermal stability and mechanical properties of Cu-Zr and Cu-Hf binary glassy alloy rods. Mater. Trans. 45, 584 (2004).CrossRefGoogle Scholar
Zhu, Z.W., Zhang, H.F., Sun, W.S., Ding, B.Z., and Hu, Z.Q.: Processing of bulk metallic glasses with high strength and large compressive plasticity in Cu50Zr50. Scr. Mater. 54, 1145 (2006).CrossRefGoogle Scholar
Xia, L., Shan, S.T., Ding, D., and Dong, Y.D.: Binary bulk metallic glass Ni62Nb38 with high compressive strength of 3100 MPa. Intermetallics 15, 1046 (2007).CrossRefGoogle Scholar
Mattern, N., Schops, A., Kuhn, U., Acker, J., Khvostikova, O., and Eckert, J.: Structural behavior of CuxZr100-x metallic glass (x=35-70). J. Non-Cryst. Solids 354, 1054 (2008).CrossRefGoogle Scholar
Wang, X.D., Yin, S., Cao, Q.P., Jiang, J.Z., Franz, H., and Jin, Z.H.: Atomic structure of binary Cu(64.5)Zr(35.5) bulk metallic glass. Appl. Phys. Lett. 92, 011902 (2008).CrossRefGoogle Scholar
Basu, J., Murty, B.S., and Ranganathan, S.: Glass forming ability: Miedema approach to (Zr, Ti, Hf)-(Cu, Ni) binary and ternary alloys. J. Alloys Compd. 465, 163 (2008).CrossRefGoogle Scholar
Yang, L., Xia, J.H., Wang, Q., Dong, C., Chen, L.Y., Ou, X., Liu, J.F., Jiang, J.Z., Klementiev, K., Saksl, K., Franz, H., Schneider, J.R., and Gerward, L.: Design of Cu8Zr5-based bulk metallic glasses. Appl. Phys. Lett. 88, 241913 (2006).CrossRefGoogle Scholar
Wang, W.H.: Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci. 52, 540 (2007).CrossRefGoogle Scholar
Xu, D.H., Duan, G., and Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 (2004).CrossRefGoogle ScholarPubMed
Zhang, W., Jia, F., Zhang, Q., and Inoue, A.: Effects of additional Ag on the thermal stability and glass-forming ability of Cu-Zr binary glassy alloys. Mater. Sci. Eng., A 459, 330 (2007).CrossRefGoogle Scholar
Li, B., Li, Z.Y., Xiong, J.G., Xing, L., Wang, D., and Li, Y.: Laser welding of Zr45Cu48Al7 bulk glassy alloy. J. Alloys Compd. 413, 118 (2006).CrossRefGoogle Scholar
Chen, L.Y., Hu, H.T., Zhang, G.Q., and Jiang, J.Z.: Catching the Ni-based ternary metallic glasses with critical diameter up to 3mm in Ni–Nb–Zr system. J. Alloys Compd. 443, 109 (2006).CrossRefGoogle Scholar
Bernal, J.D.: A geometrical approach to the structure of liquids. Nature 183, 141 (1959).CrossRefGoogle Scholar
Gaskell, P.H.: A new structural model for transition metal-metalloid glasses. Nature 276, 484 (1978).CrossRefGoogle Scholar
Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697, (2004).CrossRefGoogle ScholarPubMed
Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., and Ma, E.: Atomic packing and short-to-medium range order in metallic glasses. Nature 439, 419 (2006).CrossRefGoogle ScholarPubMed
Tai, K.P., Wang, L.T., and Liu, B.X.: Distinct atomic structures of the Ni-Nb metallic glasses formed by ion beam mixing. J. Appl. Phys. 102, 124902 (2007).CrossRefGoogle Scholar
Yang, L., Guo, G.Q., Chen, L.Y., Huang, C.L., Ge, T., Chen, D., Liaw, P.K., Saksl, K., Ren, Y., Zeng, Q.S., LaQua, B., Chen, F.G., and Jiang, J.Z.: Atomic-scale mechanisms of the glass-forming ability in metallic glasses. Phys. Rev. Lett. 109, 105502 (2012).CrossRefGoogle ScholarPubMed
Yang, L., Guo, G.Q., Zhang, G.Q., and Chen, L.Y.: Structural origin of the high glass-forming ability in Y-doped bulk metallic glasses. J. Mater. Res. 25, 1701 (2010).CrossRefGoogle Scholar
http://www.pa.msu.edu/cmp/billinge-group/programs/PDFgetX/.Google Scholar
http://www.cells.es/Beamlines/CLAESS/software/viper.html.Google Scholar
Yang, L., Yin, S., Wang, X.D., Cao, Q.P., Jiang, J.Z., Saksl, K., and Franz, H.: Atomic structure in Zr70Ni30 metallic glass. J. Appl. Phys. 102, 083512 (2007).CrossRefGoogle Scholar
Wang, S.Y., Kramer, M.J., Xu, M., Wu, S., Hao, S.G., Sordelet, D.J., Ho, K.M., and Wang, C.Z.: Experimental and ab initio molecular dynamics simulation studies of liquid Al60Cu40 alloy. Phys. Rev. B 79, 144205 (2009).CrossRefGoogle Scholar
McGreevy, R.L. and Pusztai, L.: Reverse Monte Carlo simulation: A new technique for the determination of disordered structures. Mol. Simul. 1, 359 (1988).CrossRefGoogle Scholar
http://www.rmc-forum.org/Downloads/RMCA.Google Scholar
Saksl, K.. Jovari, P., Franz, H., Zeng, Q.S., Liu, J.F., and Jiang, J.Z.: Atomic structure of Al89La6Ni5 metallic glass. J. Phys.: Condens. Matter 18, 7579 (2006).Google ScholarPubMed
http://www.ccl.net/cca/software/SOURCES/FORTRAN/allen-tildesley-book/f.35. shtml.Google Scholar
Medvedev, N.N.: Algorithm for three-dimensional Voronoi polyhedra. J. Comput. Phys. 67, 223 (1986).CrossRefGoogle Scholar
Zeng, Q.S., Sheng, H.W., Ding, Y., Wang, L., Yang, W.G., Jiang, J.Z., Mao, W.L., and Mao, H.K.: Long-range topological order in metallic glass. Science 332, 1404 (2011).CrossRefGoogle ScholarPubMed
Yang, L., Guo, G.Q., Chen, L.Y., Wei, S.H., Jiang, J.Z., and Wang, X.D.: Atomic structure in Al-doped multicomponent bulk metallic glass. Scr. Mater. 63, 879 (2010).CrossRefGoogle Scholar
Miracle, D.B., Sanders, W.S., and Senkov, O.N.: The influence of efficient atomic packing on the constitution of metallic glasses. Philos. Mag. A 83, 2409 (2003).CrossRefGoogle Scholar
Saida, J., Mstsushita, M., and Inoue, A.: Direct observation of icosahedral cluster in Zr70Pd30 binary glassy alloy. Appl. Phys. Lett. 79, 412 (2001).CrossRefGoogle Scholar
Saksl, K., Franz, H., Jovari, P., Klementiev, K., Welter, E., Ehnes, A., Saida, J., Inoue, A., and Jiang, J.Z.: Evidence of icosahedral short-range order in Zr70Cu30 and Zr70Cu29Pd1 metallic glasses. Appl. Phys. Lett. 83, 3924 (2003).CrossRefGoogle Scholar
Li, Y., Guo, Q., Kalb, J.A., and Thompson, C.V.: Matching glass-forming ability with the density of the amorphous phase. Science 322, 1816 (2008).CrossRefGoogle ScholarPubMed
Greer, A.L. and Ma, E.: Bulk metallic glasses: At the cutting edge of metals research. Mater. Res. Bull. 32, 611 (2007).CrossRefGoogle Scholar
Park, K.W., Jang, J.I., Wakeda, M., Shibutani, Y., and Lee, J.C.: Atomic packing density and its influence on the properties of Cu-Zr amorphous alloys. Scr. Mater. 57, 805 (2007).CrossRefGoogle Scholar
Xi, X.K., Li, L.L., Zhang, B., Wang, W.H., and Wu, Y.: Correlation of atomic cluster symmetry and glass-forming ability of metallic glass. Phys. Rev. Lett. 99, 095501 (2007).CrossRefGoogle ScholarPubMed
Xi, X.K., Sandor, M.T., Liu, Y.H., Wang, W.H., and Wu, Y.: Structural changes induced by microalloying in Cu46Zr47-xAl7Gdx metallic glasses. Scr. Mater. 61, 967969 (2009).CrossRefGoogle Scholar