Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-03T11:23:45.600Z Has data issue: false hasContentIssue false

Ultraviolet sensors using a luminescent europium (III) complex on acrylonitrile butadiene styrene polymer

Published online by Cambridge University Press:  14 May 2012

Érica A. de Souza
Affiliation:
Universidade de Franca, CEP 14404600 Franca, Sao Paulo, Brazil
Caroline B. Azevedo
Affiliation:
Universidade de Franca, CEP 14404600 Franca, Sao Paulo, Brazil
Lucas A. Rocha
Affiliation:
Universidade de Franca, CEP 14404600 Franca, Sao Paulo, Brazil
Emerson H. de Faria
Affiliation:
Universidade de Franca, CEP 14404600 Franca, Sao Paulo, Brazil
Paulo S. Calefi
Affiliation:
Universidade de Franca, CEP 14404600 Franca, Sao Paulo, Brazil
Katia J. Ciuffi
Affiliation:
Universidade de Franca, CEP 14404600 Franca, Sao Paulo, Brazil
Eduardo J. Nassar*
Affiliation:
Universidade de Franca, CEP 14404600 Franca, Sao Paulo, Brazil
Jorge V.L. Silva
Affiliation:
Centro da Tecnologia da Informação Renato Archer, CEP 13069-901 Campinas, Sao Paulo, Brazil
Marcelo Oliveira
Affiliation:
Centro da Tecnologia da Informação Renato Archer, CEP 13069-901 Campinas, Sao Paulo, Brazil
Izaque I. Maia
Affiliation:
Centro da Tecnologia da Informação Renato Archer, CEP 13069-901 Campinas, Sao Paulo, Brazil
*
a)Address all correspondence to this author. e-mail: ejnassar@unifran.br
Get access

Abstract

In this article, the sol-gel methodology was used for coating an acrylonitrile butadiene styrene (ABS) polymer prepared by the rapid prototyping technology with a colloid containing the europium III dipicolinic complex, which presents high emission when excited in the ultraviolet region. Either acid or base was used for treatment of the ABS polymer, with a view to activating its surface. The thermal analysis evidenced a residual mass after 600 °C, which indicated that the coating adhered to the substrate. X-ray diffraction analysis showed that the structure of the ABS polymer was not affected by the sol-gel treatment. The large band centered at 287 nm, ascribed to ligand-metal charge transfer, can be used to excite the europium III dipicolinic complex in the ultraviolet C and ultraviolet B regions. The emission appears in the characteristic red region of the electromagnetic spectrum. These results indicate that the obtained material is a candidate for use as ultraviolet sensor.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Katelnikovas, A., Barkauskas, J., Ivanauskas, F., Beganskiene, A., and Kareiva, A.: Aqueous sol-gel synthesis route for the preparation of YAG: Evaluation of sol-gel process by mathematical regression model. J. Sol-Gel Sci. Technol. 41, 193 (2007).Google Scholar
2.Wei, Q. and Chen, D., Luminescence properties of Eu3+ and Sm3+ coactivated Gd(III) tungstate phosphor for light-emitting diodes. Opt. Laser Technol. 41, 783 (2009).Google Scholar
3.Oliveira, H.H.S., Cebim, M.A., da Silva, A.A., and Davolos, M.R.: Structural and optical properties of GdAlO3:RE3+ (RE = Eu or Tb) prepared by the Pechini method for application as X-ray phosphors. J. Alloys Compd. 488(2), 619 (2009).CrossRefGoogle Scholar
4.Matos, M.G., Calefi, P.S., Ciuffi, K.J., and Nassar, E.J.: Synthesis and luminescent properties of gadolinium aluminates phosphors. Inorg. Chim. Acta 375(1), 63 (2011).CrossRefGoogle Scholar
5.Matos, M.G., Pereira, P.F.S., Calefi, P.S., Ciuffi, K.J., and Nassar, E.J.: Preparation of a GdCaAl3O7 matrix by the nonhydrolytic sol–gel route. J. Lumin. 129, 1120 (2009).CrossRefGoogle Scholar
6.Thirumalai, J., Chandramohan, R., and Vijayan, T.A.: A novel 3D nanoarchitecture of PrVO4 phosphor: Selective synthesis, characterization, and luminescence behavior. Mater. Chem. Phys. 127, 259 (2011).CrossRefGoogle Scholar
7.Zevin, M. and Reisfeld, R.: Preparation and properties of active wave guides based on zirconia glasses. Opt. Mater. 8(1–2), 37 (1997).CrossRefGoogle Scholar
8.Pereira, P.F.S., Caiut, J.M.A., Ribeiro, S.J.L., Messadde, Y., Ciuffi, K.J., Rocha, L.A., Molina, E.F., Nassar, E.J.: Microwave synthesis of YAG: Eu by sol-gel methodology. J. Lumin. 126(2), 378 (2007).CrossRefGoogle Scholar
9.Nassar, E.J., Pereira, P.F.S., Nassor, E.C.O., Ávila, L.R., Ciuffi, K.J., and Calefi, P.S.: Nonhydrolytic sol-gel synthesis and characterization of YAG. J. Mater. Sci. 42(7), 2244 (2007).CrossRefGoogle Scholar
10.Binnemans, K.: Lanthanide-based luminescent hybrid materials. Chem. Rev. 109(9), 4283 (2009).CrossRefGoogle ScholarPubMed
11.Pereira, P.F.S., Matos, M.G., Ávila, L.R., Nassor, E.C.O., Cestari, A., Ciuffi, K.J., Calefi, P.S., Nassar, E.J.: Red, Green and Blue (RGD) emission doped Y3Al5O12 (YAG) phosphors prepared bynonhydrolytic sol-gel route”. J. Lumin. 130(3), 488 (2010).Google Scholar
12.Reinhard, C. and Gudel, H.U.: High-resolution optical spectroscopy of Na3[Ln(dpa)3]·13H2O with Ln ) Er3+, Tm3+, Yb3+. Inorg. Chem. 41, 1048 (2002).CrossRefGoogle Scholar
13.Binnemans, K., Van Herck, K., and GiSrller-Walrand, C.: Influence of dipicolinate ligands on the spectroscopic properties of europium (III) in solution. Chem. Phys. Lett. 266, 297 (1997).CrossRefGoogle Scholar
14.Kim, J-G., Yoon, S-K., Sohn, Y., and Kang, J-G.: Luminescence and crystal field parameters of the Na3[Eu(DPA)3].12H2O complex in a single crystalline state. J. Alloys Compd. 274, 1 (1998).CrossRefGoogle Scholar
15.Binnemas, K. and Görller-Walrand, C.: Application of the Eu3+ ion for site symmetry determination. J. Rare Earths 14(3), 173 (1996).Google Scholar
16.D’Aléo, A., Toupet, L., Rigaut, S., Andraud, C., and Maury, O.: Guanidinium as powerful cation for the design of lanthanate tris-dipicolinate crystalline materials: Synthesis, structure and photophysical properties. Opt. Mater. 30, 1682 (2008).CrossRefGoogle Scholar
17.Lis, S. and Choppin, G.R.: Luminescence study of europium (III) complexes with dicarboxylic acids in aqueous solution. J. Alloys Compd. 225, 257 (1995).CrossRefGoogle Scholar
18.Hamacek, J., Zebret, S., and Bernardinelli, G.: Supramolecular structure of the polymeric Eu (III) complex with pyridine-2,6-dicarboxylic acid. Polyhedron 28, 2179 (2009).CrossRefGoogle Scholar
19.Chua, C.K., Leong, K.F., and Lim, C.S.: Rapid Prototyping: Principles and Applications, 2nd ed. (World Scientific, Singapore, 2010) p. 448.Google Scholar
20.Kruth, J-P., Leu, M.C., and Nakagawa, T.: Progress in additive manufacturing and rapid prototyping. CIRP Ann. 47(2), 525 (1998).CrossRefGoogle Scholar
21.Bellehumeur, C., Li, L., Sun, Q., and Gu, P.: Modeling of bond formation between polymer filaments in the fused deposition modeling process. J. Manuf. Processes 6(2), 170 (2004).CrossRefGoogle Scholar
22.Li, G., Lu, S., Pang, J., Bai, Y., Zhang, L., and Guo, X.: Preparation, microstructure and properties of ABS resin with bimodal distribution of rubber particles. Mater. Lett. 66, 219 (2012).CrossRefGoogle Scholar
23.Bandeira, L.C., De Campos, B.M., De Faria, E.H., Ciuffi, K.J., Calefi, P.S., Nassar, E.J., Silva, J.V.L., Oliveira, M., and Maia, I.A.: TG/DTG/DTA/DSC as a tool for studying deposition by the sol-gel process on materials obtained by rapid prototyping. J. Therm. Anal. Calorim. 97(1), 67 (2009).CrossRefGoogle Scholar
24.De Campos, B.M., Bandeira, L.C., Calefi, P.S., Ciuffi, K.J., Nassar, E.J., Silva, J.V.L., Oliveira, M., and Maia, I.A.: Protective coating materials on Nylon substrate by sol-Gel. Virtual Phys. Prototyping 6(1), 33 (2011).Google Scholar
25.Bandeira, L.C., de Campos, B.M., Calefi, P.S., Ciuffi, K.J., Nassar, E.J., Silva, J.V.L., Oliveira, M., and Maia, I.A.: Coating on organic polymer with macroporous structure prepared by rapid prototyping. J. Nanostruct. Polym. Nanocomposites 7/2, 47 (2011).Google Scholar