Published online by Cambridge University Press: 20 September 2011
With 2 mol% Zn2+ codoping and 2 mol% K+ charge compensation, the red-emitting phosphor [K0.8Y0.63Eu3+0.08Zn0.02][Mo0.2W0.8O4] was synthesized by solid-state reaction. X-ray powder diffraction spectrum indicates that it owns single phase. Through its emission spectra, excitation spectra, and fluorescence decay curves measured, its emission mechanism was mentioned and it was calculated for its partial J-O parameters and quantum efficiency of Eu3+ 5D0 energy level under 395 nm excitation. The results indicate that Eu3+ 5D0 → 7F2 red luminescence in the host can be excited by 395 nm, but its quantum efficiency can be improved in space and it has potential applications for white light-emitting diode as the red luminescent materials.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.