Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-02T14:42:22.862Z Has data issue: false hasContentIssue false

Chemical taphonomy and preservation modes of Jurassic spinicaudatans from Patagonia: a chemometric approach

Published online by Cambridge University Press:  24 May 2018

Mateo D. Monferran
Affiliation:
Centro de Ecología Aplicada del Litoral, Universidad Nacional del Nordeste, CONICET, CECOAL, C.C. 128, Ruta 5, Km 2,5, 3400 Corrientes, Argentina 〈monfdm@gmail.com〉, 〈ofgallego@live.com.ar〉
José A. D’Angelo
Affiliation:
IANIGLA-CCT-CONICET-MENDOZA, FCEN, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina and Palaeobotanical Laboratory, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada 〈joseadangelo@yahoo.com〉
Nora G. Cabaleri
Affiliation:
Instituto de Geocronología y Geología Isotópica (INGEIS-CONICET-UBA), Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina 〈cabaleri@ingeis.uba.ar〉
Oscar F. Gallego
Affiliation:
Centro de Ecología Aplicada del Litoral, Universidad Nacional del Nordeste, CONICET, CECOAL, C.C. 128, Ruta 5, Km 2,5, 3400 Corrientes, Argentina 〈monfdm@gmail.com〉, 〈ofgallego@live.com.ar〉
Grony Garban
Affiliation:
Centro de Geoquímica. Instituto de Ciencias de la Tierra. 2do piso, oficina 214-C Facultad de Ciencias. Universidad Central de Venezuela Caracas-Venezuela 〈grony.garban@ciens.ucv.ve〉

Abstract

Spinicaudatans (‘clam shrimps’) are small branchiopod crustaceans enclosed in a chitinous bivalved carapace that is often the only preserved element in the fossil record. However, few studies have analyzed the preservation of these carapaces, which have been found in continental facies from the Devonian to the present. The aim of this study was to contribute to a better understanding of the chemical preservation of fossil spinicaudatan carapaces, and it focused on spinicaudatan carapaces of the Cañadón Asfalto Formation from the Jurassic of Argentina. Semiquantitative energy-dispersive X-ray spectrometry (EDS) analysis provided elemental composition data that were interpreted using principal component analysis (PCA). The results showed a complex chemical mode of preservation for spinicaudatan carapaces. In some parts, EDS spectra of the specimens exhibit peaks of calcium, phosphorous, aluminum, and fluorine, representing the retention of original carapace material with some diagenetic recrystallization. Certain zones of the carapace show low-intensity peaks of the elements mentioned, while silicon and oxygen peaks (from the rock matrix) become the dominant spectral signals. These modes of preservation modify the interpretations and observations of the ornamentation of the carapace, which are used as taxonomic features. Our results suggest that specific diagenetic processes play a fundamental role in the preservation of spinicaudatans.

Type
Articles
Copyright
Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P.A., 1988, Phosphatized soft-bodied squids from the Jurassic Oxford Clay: Lethaia, v. 21, p. 403410.Google Scholar
Allison, P.A., Maeda, H., Tuzino, T., and Maeda, Y., 2008, Exceptional preservation within Pleistocene lacustrine sediments of Shiobara, Japan: PALAIOS, v. 23, p. 260266.Google Scholar
Anderson, T.W., 2003, An Introduction to Multivariate Statistical Analysis (third edition): Hoboken, Wiley, 752 p.Google Scholar
Astrop, T.I., and Hegna, T.A., 2015, Phylogenetic relationships between living and fossil spinicaudatan taxa (Branchiopoda Spinicaudata): Reconsidering the evidence: Journal of Crustacean Biology, v. 35, p. 339354.Google Scholar
Astrop, T.I., Sahni, V., Blackledge, T.A., and Stark, A.Y., 2015, Mechanical properties of the chitin-calcium-phospate “clam shrimp” carapace (Branchiopoda: Spinicaudata): Implications for taphonomy and fossilization: Journal of Crustacean Biology, v. 35, p. 123131.Google Scholar
Barrea, R.A., and Mainardi, R.T., 1998, Standardless XRF analysis of stainless-steel samples: X-Ray Spectrometry, v. 27, p. 111116.Google Scholar
Bastin, G.F., and Heijligers, H.J.M., 1990, Progress in electron-probe microanalysis: Materialwissenschaft und Werkstofftechnik, v. 21, p. 216221.Google Scholar
Bastin, G.F., Van Loo, F.J.J., and Heijligers, H.J.M., 1986, Evaluation of the use of Gaussian φ (ρz) curves in quantitative electron probe microanalysis: A new optimization: X-Ray Spectrometry, v. 13, p. 9197.Google Scholar
Behrensmeyer, A.K., Kidwell, S.M., and Gastaldo, R.A., 2000, Taphonomy and paleobiology: Paleobiology, v. 26, p. 103147.Google Scholar
Benavente, C.A., D’Angelo, J.A., Crespo, E.M., and Mancuso, A., 2014, Chemometric approach to charophyte preservation (Triassic Cerro Puntudo Formation, Argentina): Paleolimnologic implications: PALAIOS, v. 29, p. 449459.Google Scholar
Brett, C.E., 1990, Destructive taphonomic processes and skeletal durability, in Briggs, D.E.G., and Crowther, P.R., eds., Paleobiology, A Synthesis: Oxford, Blackwell, p. 223226.Google Scholar
Briggs, D.E.G., 2003, The role of decay and mineralization in the preservation of soft-bodied fossils: Annual Review of Earth and Planetary Sciences, v. 31, p. 275301.Google Scholar
Briggs, D.E.G., and Kear, A.J., 1994, Decay and mineralization of shrimps: PALAIOS, v. 9, p. 431456.Google Scholar
Cabaleri, N.G., and Armella, C., 1999, Facies lacustres de la Formación Cañadón Asfalto (Caloviano–Oxfordiano), en la quebrada Las Chacritas, Cerro Cóndor, provincia del Chubut: Revista de la Asociación Geológica Argentina, v. 54, p. 375388.Google Scholar
Cabaleri, N.G., Armella, C., and Silva Nieto, D.G., 2005, Saline lakes of Cañadón Asfalto Formation (Middle–Upper Jurassic), Cerro Condor, Chubut Province (Patagonia), Argentina: Facies, v. 51, p. 350364.Google Scholar
Cabaleri, N.G., Volkheimer, W., Armella, C., Gallego, O.F., Silva Nieto, D.G., Cagnoni, M.C., Ramos, A.M., and Panarello, H.O., 2010, Estratigrafía, análisis de facies y paleoambientes de la Formación Cañadón Asfalto: Jurásico, depocentro de Cerro Cóndor, río Chubut medio, Patagonia, República Argentina: Revista de la Asociación Geológica Argentina, v. 66, p. 349367.Google Scholar
Cabaleri, N.G., Benavente, C.A., Monferran, M.D., Narváez, P., Volkheimer, W., Gallego, O.F., and Do Campo, M., 2013, Sedimentology and palaeontology of the Upper Jurassic Puesto Almada Member (Cañadón Asfalto Formation, Fossati sub-basin), Patagonia Argentina: Palaeoenvironmental and climatic significance: Sedimentary Geology, v. 296, 103121.Google Scholar
Cardoso, R.N., 1962, Alguns Conchostráceos Mesozoicos do Brasil: Boletim da Sociedade Brasileira de Geologia, v. 11, p. 2132.Google Scholar
Chen, P.J., and Shen, Y.B., 1985, An Introduction to Fossil Conchostraca: Beijing, Science Press, 241 p. [in Chinese].Google Scholar
D’Angelo, J.A., Perino, E., Marchevsky, E., and Riveros, J.A., 2002, Standardless analysis of small amounts of mineral samples by SR-XRF and conventional XRF analyses: X-Ray Spectrometry, v. 31, p. 419423.Google Scholar
D’Angelo, J.A., Escudero, L.B., Volkheimer, W., and Zodrow, E.L., 2011, Chemometric analysis of functional groups in fossil remains of the Dicroidium flora (Cacheuta, Mendoza, Argentina): Implications for kerogen formation: International Journal of Coal Geology, v. 87, p. 97111.Google Scholar
D’Angelo, J.A., Monferran, M.D., Volkheimer, W., and Cabaleri, N., 2013, Paleobiochemistry of fossil remains (Jurassic Cañadón Asfalto Formation, Chubut, Argentina). V Simposio Argentino Jurásico, Trelew, Argentina, 2013: Ameghiniana Supplementary Abstracts, v. 50, p. R42.Google Scholar
Gallego, O.F., 2010, A new crustacean clam shrimp (Spinicaudata: Eosestheriidae) from the Upper Triassic of Argentina and its importance for ‘conchostracan’ taxonomy: Alcheringa, v. 34, p. 179195.Google Scholar
Gallego, O.F., Cabaleri, N., Armella, C., Silva Nieto, D., Volkheimer, W., Ballent, S., Martínez, S., Monferran, M., and Páez, M., 2011, Palaeontology and environment of a new fossiliferous locality from the Cañadón Asfalto Formation (Middle to Upper Jurassic) Chubut Province, Argentina: Journal of South American Earth Sciences, v. 31, p. 5468.Google Scholar
Gallego, O.F., Monferran, M.D., Astrop, T.I., and Zacarías, I.A, 2013, Reassignment of Lioestheria codoensis Cardoso (Spinicaudata, Anthronestheriidae) from the Lower Cretaceous of Brazil: Systematics and paleoecology: Revista Brasilera de Paleontoleontlogia, v. 16, p. 4760.Google Scholar
Gierlowski-Kordesch, E.H., and Kelts, K., eds., 2000, Lake Basins Through Space and Time: Tulsa, American Association of Petroleum Geologists, 648 p.Google Scholar
Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Romig, A.D. Jr., Lyman, C.E., Fiori, C., and Lifshin, E., 1992, Scanning Electron Microscopy and X-ray Microanalysis: A Text for Biologists, Material Scientists, and Geologists (second edition): New York, Plenum Press, 820 p.Google Scholar
Goldstein, J.I., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L.C., and Michael, J.R., 2007, Scanning Electron Microscopy and X-ray Microanalysis (third edition): New York, Springer, 586 p.Google Scholar
Gupta, N.S., and Briggs, D.E.G., 2011, Taphonomy of animal organic skeletons through time, in Allison, P.A., and Bottjer, D.J., eds., Taphonomy: Process and Bias Through Time: Dordrecht, Springer, p. 199221.Google Scholar
Gupta, N.S., Michels, R., Briggs, D.E.G., Evershed, R.P., and Pancost, R.D., 2006, The organic preservation of fossil arthropods: An experimental study: Proceedings of the Royal Society of London, v. 273, Series B, p. 27772783.Google Scholar
Hammer, Ø., Harper, D.A.T., and Ryan, P.D., 2001, PAST: Paleontological statistics software package for education and data analysis: Palaeontologia Electronica, v. 4, no. 1, p. 19, http://palaeoelectronica.org/2001_1/past/issue1_01.htm.Google Scholar
Hay, R.L., 1966, Zeolites and zeolitic reactions in sedimentary rocks: Special Paper, Geological Society of America, v. 85, p. 1122.Google Scholar
Izenman, A.J., 2008, Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning (first edition): New York, Springer, p. 734.Google Scholar
Johnson, R.A., and Wichern, D.W., 2007, Applied Multivariate Statistical Analysis (sixth edition): Upper Saddle River, Prentice Hall, p. 800.Google Scholar
Jolliffe, I.T., 2002, Principal Component Analysis (second edition): New York, Springer, 487 pp.Google Scholar
Jones, B.F., VanDenburgh, A.S., Truesdell, A.H., and Rettig, S.L., 1969, Interstitial brines in playa sediments: Chemical Geology, v. 4, p. 253262.Google Scholar
Kaiser, H.F., 1960, The application of electronic computers to factor analysis: Educational and Psychological Measurement, v. 20, p. 141151.Google Scholar
Kendall, M.G., 1965, A Course in Multivariate Analysis (third impression): London, Charles Griffin, 185 p.Google Scholar
Kidwell, S.M., and Bosence, D.W.J., 1991, Taphonomy and time averaging of marine shelly faunas, in Allison, P.A., and Briggs, D.E.G., eds., Taphonomy, Releasing the Data Locked in the Fossil Record: New York, Plenum Press, p. 115209.Google Scholar
Klug, C., Schulz, H., and De Baets, K., 2009, Red Devonian trilobites with green eyes from Morocco and the silicification of the trilobite exoskeleton: Acta Palaeontologica Polonica, v. 54, p. 117123.Google Scholar
Kohn, M.J., Schoeninger, M.J., and Barker, W.W., 1999, Altered states: Effects of diagenesis on fossil tooth chemistry: Geochimica et Cosmochimica Acta, v. 63, p. 27372747.Google Scholar
Kozur, H.W., and Weems, R.E., 2010, The biostratigraphic importance of conchostracans in continental Triassic of the northern hemisphere, in Lucas, S., ed., The Triassic Timescale: Geological Society of London Special Publications, v. 334, p. 315417.Google Scholar
Lattin, J., Carroll, D., and Green, P., 2002, Analyzing Multivariate Data: Pacific Grove, Duxbury Press, 560 p.Google Scholar
Li, G., and Matsuoka, A., 2012, Jurassic clam shrimp (“conchostracan”) faunas in China: Science Report of Niigata University (Geology), v. 27, p. 7388.Google Scholar
Lin, J.P., and Briggs, D.E.G., 2010, Burgess shale-type preservation: A comparison of naraoiids (Arthropoda) from three Cambrian localities: PALAIOS, v. 25, p. 463467.Google Scholar
Martin, R.E., 1999, Taphonomy, a Process Approach: Cambridge, Cambridge University Press, 526 p.Google Scholar
Monferran, M.D., 2015, Análisis Paleoecológico de los conchostracos (Spinicaudata) de la Formación Cañadón Asfalto, Chubut, Argentina [Ph.D. dissertation]: Buenos Aires, Universidad de Buenos Aires, 326 p.Google Scholar
Monferran, M.D., Cabaleri, N.G., Gallego, O.F., Armella, C., and Cagnoni, M., 2016, Spinicaudatans from the Upper Jurassic of Argentina and their paleoenvironments: PALAIOS, v. 31, p. 405420.Google Scholar
Nriagu, J.O., 1976, Phospate-clay mineral relations in soils and sediments: Canadian Journal of Earth Sciences, v. 13, p. 717736.Google Scholar
Packard, A.S., 1877, Descriptions of new phyllopod Crustacea from the west: Bulletin of the United States Geological and Geographical Survey of the Territories, v. 3, p. 171179.Google Scholar
Pan, Y., Sha, J., and Fürsich, F.T., 2014, A model for organic fossilization of the Early Cretaceous Jehol Lagerstätte based on the taponomy of “Ephemeropsis trisetalis: PALAIOS, v. 29, p. 363377.Google Scholar
Philibert, J., 1963, A method for calculating the absorption correction in electron probe microanalysis, in Pattee, H.H., Cosslett, V.E., and Engström, A., eds., Proceedings of the 3rd International Conference on X-ray Optics and X-ray Microanalysis, Stanford: New York, Academic Press, p. 379–392.Google Scholar
Previtera, E., D’Angelo, J.A., and Mancuso, A.C., 2013, Preliminary chemometric study of bone diagenesis in early Triassic cynodonts from Mendoza, Argentina: Ameghiniana, v. 50, p. 460468.Google Scholar
Reed, S., 1993, Electron Probe Microanalysis (second edition): Cambridge, Cambridge University Press, 326 p.Google Scholar
Rencher, A.C., 2002, Methods of Multivariate Analysis, v. Volume 1 (second edition): Hoboken, Wiley, 738 pp.Google Scholar
Rieder, N., Abaffy, P., Hauf, A., Lindel, M., and Weishäupl, H., 1984, Funktionsmorphologische Untersuchungen an den Conchostraceen Lepestheria dahalacensis and Limnadia lenticularis (Crustacea, Phyllopoda, Conchostraca): Zoologische Beiträge Neue Folge, v. 28, p. 417444.Google Scholar
Schaefer, J., Kramer, K.J., Garbow, J.R., Jacob, G.S., Stejskal, E.O., Hopkins, T.L., and Speirs, R.D., 1987, Aromatic cross-links in insect cuticle: Detection by solid-state 13C and 15N NMR: Science, v. 235, p. 12001204.Google Scholar
Sheppard, R.A., and Gude, A.J., 1969, Diagenesis in tuffs of the Barstow Formation, Mud Hills, San Bernardino County, California: Geological Society of America Special Paper, v. 634, p. 135.Google Scholar
Silva Nieto, D.G., Cabaleri, N.G., and Salani, F.M., 2003, Estratigrafía de la Formación Cañadón Asfalto (Jurásico Superior) provincia del Chubut: Ameghiniana Suplementary Abstracts, v. 40, p. 46R.Google Scholar
StatSoft, Inc 2004, STATISTICA (Data Analysis Software System), Version 7, http://www.statsoft.com/ (accessed March 2013).Google Scholar
Stigall, L.A., Babcock, E.L, Briggs, D.E.G., and Leslie, S.A., 2008, Taphonomy of lacustrine interbeds in the Kirkpatrick Basalt (Jurassic), Antarctica: PALAIOS, v. 23, p. 344355.Google Scholar
Stipanicic, P.N., Rodrigo, F., Baulíes, O., and Martínez, C., 1968, Las formaciones presenonianas en el dominio del Macizo Nordpatagónico y regiones adyacentes: Revista de la Asociación Geológica Argentina, v. 23, p. 6798.Google Scholar
Tasch, P., 1969, Branchiopoda, in Moore, R.C., ed., Treatise on Invertebrate Paleontology: Boulder and Lawrence, Geological Society of America and University of Kansas, p. 128191.Google Scholar
Tasch, P., 1982, Experimental Valve Geothermometry applied to fossil conchostracan valves, Blizzard Heights, Antartica, in Craddock, C., ed., Antarctic Geoscience, Symposium on Antarctic Geology and Geophysics, August 22–27, 1977, International Union of Geological Sciences: Madison, University of Wisconsin Press, p. 661668.Google Scholar
Tasch, P., 1987, Fossil Conchostraca of the Southern Hemisphere and Continental Drift. Paleontology, Biostratigraphy and Dispersal: Boulder, Geological Society of America, 290 p.Google Scholar
Thiéry, A., 1996, Large branchiopods (Crustacea, Anostraca, Notostraca, Spinicaudata, Laevicaudata) from temporary inland waters of Arabian Peninsula: Fauna of Saudi Arabia, v. 15, p. 3798.Google Scholar
Thomas, D.B., Chinsamy, A., Conrad, N.J., and Kandel, A.W., 2012, Chemical investigation of mineralization categories used to asses taphonomy: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 1, p. 104110.Google Scholar
Turner, J., 1983, Descripción geológica de la Hoja 44d Colan Conhué, provincia del Chubut: Bulletin Servicio Geológico Nacional, no. 197, p. 178.Google Scholar
Vallati, P., 1986, Conchóstracos Jurásicos de la Provincia de Chubut, Argentina: Actas 4º Congreso Argentino de Paleontología y Bioestratigrafía, v. 4, p. 2938.Google Scholar
Vannier, J., Thiéry, P., and Racheboeuf, R.P., 2003, Spinicaudatans and ostracods (Crustacea) from the Montceau Lagerstätte (late Carboniferous, France): Morphology and paleoenviromental significance: Paleontolology, v. 46, p. 9991030.Google Scholar
Varmuza, K., and Filzmoser, P., 2016, Introduction to multivariate statistical analysis in chemometrics: Boca Raton, CRC Press, 336 pp.Google Scholar
Vázquez, C., De Leyt, D.V., and Riveros, J.A., 1988, Absolute method for determination of metallic film thickness by X-ray fluorescence: X-Ray Spectromery, v. 17, p. 4346.Google Scholar
Vázquez, C., De Leyt, D.V., and Riveros, J.A., 1990, Absolute X-ray fluorescent method for the determination of metal thicknesses by intensity ratio measurements: X-Ray Spectrometry, v. 19, p. 9396.Google Scholar
Volkheimer, W., Quattrocchio, M., Cabaleri, N.G., and García, V., 2008, Palynology and paleoenvironment of the Jurassic lacustrine Cañadón Asfalto Formation at Cañadón Lahuincó locality, Chubut province, central Patagonia, Argentina: Revista Española de Micropaleontología, v. 40, p. 7796.Google Scholar
Volkheimer, W., Quattrocchio, M., Cabaleri, N.G., Narváez, P., Rosenfeld, U., Scafati, L., and Melendi, D., 2015, Environmental and climatic proxies for the Cañadón Asfalto and Neuquén basins (Patagonia, Argentina): Review of Middle to Upper Jurassic continental and near coastal sequences: Revista Brasilera de Paleontología, v. 18, p. 7182.Google Scholar
Warth, M., 1969, Conchostraken (Crustacea, Phyllopoda) aus dem Keuper (Ob. Trias) Zentral−Württembergs: Jahreshefte der Gesellschaft für Naturkunde in Württemberg, v. 124, p. 123145.Google Scholar
Zodrow, E.L., D’Angelo, J.A., Mastalerz, M., and Keefe, D., 2009, Compression-cuticle of seed ferns: Insights from liquid–solid states FTIR (late Palaeozoic–early Mesozoic, Canada–Spain–Argentina): International Journal of Coal Geology, v. 79, p. 6173.Google Scholar
Supplementary material: File

Monferran et al. supplementary material

Appendix 1

Download Monferran et al. supplementary material(File)
File 21.4 KB
Supplementary material: File

Monferran et al. supplementary material

Appendix 2

Download Monferran et al. supplementary material(File)
File 287.1 KB