Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-02T19:00:04.343Z Has data issue: false hasContentIssue false

Locomotor behavior in early reptiles: insights from an unusual Erpetopus trackway

Published online by Cambridge University Press:  14 July 2015

Massimo Bernardi
Affiliation:
Museo Tridentino di Scienze Naturali, via Calepina, 14-38122 Trento, Italy, ;
Marco Avanzini
Affiliation:
Museo Tridentino di Scienze Naturali, via Calepina, 14-38122 Trento, Italy, ;

Abstract

An Erpetopus trackway recorded in the Lower Permian Collio Formation (Orobic Alps, northern Italy) is investigated as a source of data to reconstruct ancestral patterns of locomotion in eureptiles. The inferred small-sized captorhinid-“protorothyridid” producer cut an inclined muddy surface dragging its front limb digits, tail, and belly on the ground. Integrating ichnological and anatomical data we suggest that small captorhinids (“protorothyridids”) locomotion was performed with an obligatory, rigid sprawling posture with the trunk only slightly lifted from the substrate in a low, sprawled ‘belly walk’.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benton, M. 2004. Vertebrate Palaeontology (3rd edition). Wiley-Blackwell, Oxford, 455 p.Google Scholar
Berman, D. S., Henrici, A. C., Sumida, S. S., and Martens, T. 2000. Redescription of Seymouria sanjuanensis (Seymouriamorpha) from the Lower Permian of Germany based on complete, mature specimens with a discussion of paleoecology of the Bromacker locality assemblage. Journal of Vertebrate Paleontology, 20: 253268.Google Scholar
Berra, F. and Felletti, F. 2011. Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): stratigraphic significance. Sedimentary Geology, 235: 249263.Google Scholar
Carroll, R. L. 1969. A Middle Pennsylvanian captorhinomorph, and the interrelationships of primitive reptiles. Journal of Paleontology, 43: 151170.Google Scholar
Carroll, R. L. 1988. Vertebrate Paleontology and Evolution. W.H. Freeman and Company, New York, 698 p.Google Scholar
Carroll, R. L. and Baird, D. 1972. Carboniferous stem-reptiles of the Family Romeriidae. Bulletin of the Museum of Comparative Zoology, 143: 321364.Google Scholar
Casati, P. and Gnaccolini, M. 1967. Geologia delle Alpi Orobie occidentali. Rivista Italiana di Paleontologia e Stratigrafia, 73: 25162.Google Scholar
Cassinis, G. and Doubinger, J. 1991. On the geological time of the typical Collio and Tregiovo continental beds in the Southalpine Permian (Italy), and some additional observations. Atti Ticinensi di Scienze della Terra, 34: 120.Google Scholar
Ceoloni, P., Conti, M. A., Mariotti, N., Mietto, P., and Nicosia, U. 1987. Tetrapod footprints from Collio Formation (Lombardy, Northern Italy). Memorie di Scienze Geologiche, 39: 213233.Google Scholar
Chesnut, D. R., Baird, D., Smith, J. H., and Lewis, R. Q. 1994. Reptile trackway from the Lee Formation (Lower Pennsylvanian) of South-Central Kentucky. Journal of Paleontology, 68: 154158.Google Scholar
Conti, M. A., Mariotti, N., Mietto, P., and Nicosia, U. 1991. Nuove ricerche sugli icnofossili della Formazione di Collio in Val Trompia (Brescia). Natura Bresciana, 26: 109119.Google Scholar
Conti, M. A., Mariotti, N., Nicosia, U., and Pittau, P. 1997. Selected bioevents succession in the continental Permian of the Southern Alps (Italy): improvements of intrabasinal and interregional correlations, p. 5165. In Dickins, J. M., Zunyi, Y., Hongfu, Y., Lucas, S. G., and Acharyya, S. K. (eds.), Late Palaeozoic and Early Mesozoic circum-Pacific events and their global correlation. Cambridge University Press, Cambridge.Google Scholar
Falcon-Lang, H. J., Benton, M. J., and Stimson, M. 2007. Ecology of earliest reptiles inferred from basal Pennsylvanian trackways. Journal of the Geological Society, 164: 16.Google Scholar
Haubold, H. 1971. Ichnia amphibiorum et reptiliorum fossilium, p. 1124. In Kuhn, O. (ed.), Handbuch der Paläeoherpetologie. G. Fisher-Verlag, Stuttgart-Portland.Google Scholar
Haubold, H. 1973. Die Tetrapodenfährten aus dem Perm Europas. Freiberger Forschungshefte Hefte C, 285: 555.Google Scholar
Haubold, H. 1996. Ichnotaxonomie und Klassification von Tetrapodenfährten aus dem Perm. Hallesches Jährbuch Geowisseschaft B, 18: 2388.Google Scholar
Haubold, H. 2000. Tetrapodenfährten aus dem Perm-Kenntnisstand und Progress 2000. Hallesches Jährbuch Geowisseschaft B, 22: 116.Google Scholar
Haubold, H. and Lucas, S. G. 2001. Die Tetrapodenfährten der Choza Formation (Texas) und das Artinsk-Alter der Redbed-Ichnofaunen des Unteren Perm. Hallesches Jährbuch Geowisseschaft B, 23: 79108.Google Scholar
Haubold, H. and Lucas, S. G. 2003. Tetrapod footprints of the Lower Permian Choza Formation at Castle Peak, Texas. Paläontologische Zeitschrift, 77: 247261.Google Scholar
Heaton, M. J. 1979. Primitive captorhinid reptiles from the Late Pennsylvanian and Early Permian of Oklahoma and Texas. Oklahoma Geological Survey Bulletin, 127: 184.Google Scholar
Heaton, M. J. and Reisz, R. R. 1980. A skeletal reconstruction of the Early Permian captorhinid reptile Eocaptorhinus laticeps (Williston). Journal of Paleontology, 54: 136143.Google Scholar
Holmes, R. B. 1977. The osteology and musculature of the pectoral limb of small captorhinids. Journal of Morphology, 152: 101140.Google Scholar
Holmes, R. B. 2003. The hind limb of Captorhinus aguti and the step cycle of basal amniotes. Canadian Journal of Earth Sciences, 40: 515526.Google Scholar
Hunt, A. P., Lucas, S. G., Haubold, H., and Lockley, M. G. 1995. Early Permian (late Wolfcampian) terapod tracks from the Robledo Mountains, south-central New Mexico. New Mexico Museum of Natural History Science Bulletin, 6: 167180.Google Scholar
Leonardi, G. 1987. Glossary and manual of tetrapod footprint palaeoichnology. Departamento Nacional da Produção Mineral, Brasilia, 117 p.Google Scholar
Lockley, M. G. 1991. Tracking Dinosaurs: A New Look at an Ancient World. Cambridge University Press, Cambridge, 238 p.Google Scholar
Lucas, S. G. and Hunt, A. P. 2006. Permian tetrapod footprints: biostratigraphy and biochronology, p. 179200. In Lucas, S. G., Cassinis, G., and Shneider, J. W. (eds.), Non-Marine Permian Biostratigraphy and Biochronology. Geological Society, London, Special Publications, 265.Google Scholar
Minter, N. J., Krainer, K., Lucas, S. G., Braddy, S. J., and Hunt, A. P. 2007. Palaeoecology of an Early Permian playa lake trace fossil assemblage from Castle Peak, Texas, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 246: 390423.Google Scholar
Platt, B. F. and Hasiotis, S. T. 2008. A new system for describing and classifying tetrapod tail traces with implications for interpreting the dinosaur tail trace record. Palaios, 23: 313.Google Scholar
Reilly, S. M., Mcelroy, E. J., Odum, R. A. and Hornyak, V. A. 2006. Tuataras and salamanders show that walking and running mechanics are ancient features of tetrapod locomotion. Proceedings of the Royal Society B, 273: 15631568.Google Scholar
Reisz, R. R. 1981. A diapsid reptile from the Pennsylvanian of Kansas. University of Kansas Publications of the Museum of Natural History, 7: 174.Google Scholar
Santi, G. 2004. Tetrapod footprints in the Lower Permian of Southalpine (Northern Italy): is it different Camunipes from Erpetopus and Varanopus? 32nd International Geological Congress Abstract Volume, 1: 579.Google Scholar
Santi, G. 2005. Lower Permian palaeoichnology from the Orobic Basin (northern Alps). GeoAlp, 2: 7790.Google Scholar
Santi, G. 2007a. Variation in the ichnofauna of the Collio Formation (Lower Permian) in the South-Alpine Region (northern Italy). Ichnos, 14: 91104.Google Scholar
Santi, G. 2007b. A short critique of the ichnotaxonomic dualism Camunipes-Erpetopus, Lower Permian ichnogenera from Europe and North America. Ichnos, 14: 185191.Google Scholar
Sarjeant, W. A. S. 1971. Vertebrate tracks from the Permian of Castle Peak, Texas. Texas Journal of Science, 22: 344366.Google Scholar
Schaeffer, B. 1941. The morphological and functional evolution of the tarsus in amphibians and reptiles. Bulletin of the American Museum of Natural History, 78: 398472.Google Scholar
Snyder, R. C. 1954. The anatomy and function of the pelvic girdle and hindlimb in lizard locomotion. American Journal of Anatomy, 95: 115.Google Scholar
Sumida, S. S. 1989. The appendicular skeleton of the Early Permian genus Labidosaurus (Reptilia, Captorhinomorpha) and the hind limb musculature of captorhinid reptiles. Journal of Vertebrate Paleontology, 9: 295313.Google Scholar
Sumida, S. S. 1997. Locomotor features of taxa spanning the origin of amniotes, p. 353398. In Sumida, S. S. and Martin, K. L. (eds.), Amniote Origins: Completing the Transition to Land. Academic Press, San Diego.Google Scholar
Sumida, S. S. and Modesto, S. 2001. A Phylogenetic Perspective on Locomotory Strategies in Early Amniotes. American Zoologist, 41: 586597.Google Scholar
Thulborn, R. A. and Wade, M. 1989. A footprint as history of movement, p. 5156. In Gillette, D. and Lockley, M. G. (eds.), Dinosaur Tracks and Traces. Cambridge University Press, Cambridge.Google Scholar
Vaughn, P. P. 1955. The Permian reptile Araeoscelis restudied. Bulletin of the Museum of Comparative Zoology, 113: 305467.Google Scholar
Vaughn, P. P. 1970. Alternation of neural spine height in certain early Permian tetrapods. Bulletin of the Southern California Academy of Sciences, 164: 130.Google Scholar
Visscher, H., Kerp, H., Clement-Westerholf, J. A., and Looy, C. V. 1999. Permian floras of the Southern Alps, p. 139146. In Cassinis, G., Cortesogno, L., Gaggero, L., Massari, F., Neri, C., Nicosia, U., and Pittau, P. (eds.), Stratigraphy and Facies of the Permian Deposits between Eastern Lombardy and the Western Dolomites. International Congress on The continental Permian of the Southern Alps and Sardinia (Italy). Regional reports and general correlations, Field trip guide-book.Google Scholar
Voigt, S., Berman, D. S., and Henrici, A. C. 2007. First well-established track-trackmaker association of Paleozoic tetrapods based on Ichniotherium trackways and diadectid skeletons from the Lower Permian of Germany. Journal of Vertebrate Paleontology, 27: 553570.Google Scholar