Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-02T06:35:37.672Z Has data issue: false hasContentIssue false

Nonmineralized triradial conulariids from the lowermost Cambrian Stage 2 of the Olenek Uplift, Siberian Platform

Published online by Cambridge University Press:  13 April 2022

Zhiger A. Sarsembaev
Affiliation:
Trofimuk Institute of Petroleum Geology and Geophysics of SB RAS, Akademika Koptyuga prospect 3, 630090 Novosibirsk, Russia Department of Geology and Geophysics, Novosibirsk State University, Pirogova 1, 630090 Novosibirsk, Russia.
Vasiliy V. Marusin*
Affiliation:
Trofimuk Institute of Petroleum Geology and Geophysics of SB RAS, Akademika Koptyuga prospect 3, 630090 Novosibirsk, Russia Department of Geology and Geophysics, Novosibirsk State University, Pirogova 1, 630090 Novosibirsk, Russia.
*
*Corresponding author

Abstract

In the early Cambrian fossil record, triradial symmetry is typical for anabaritids and occurs among carinachitids. The former are an extinct group of minute benthic cnidarians covered with a calcareous tubular exoskeleton. The origin of the anabaritids is poorly understood, but previously reported triradial pyramid-shaped steinkerns and molds of the oldest conulariids, Vendoconularia, from the upper Ediacaran of the White Sea region suggested the anabaritids were closely related to conulariids. However, triradial symmetry could originate independently in different lineages in the late Ediacaran and early Cambrian. Herein we describe a new taxon, Ilankirus kessyusensis new genus new species, from the base of the Cambrian Stage 2 of the Olenek Uplift (Siberian Platform). These fossils occur as ornamented steinkerns in the shape of trilateral pyramids and lack any relics of a mineralized exoskeleton. Abundant plastic deformations and fractures of the casts suggest the organism was weakly if at all mineralized. The steinkerns are encrusted with a thin patina of iron-rich chlorite (chamosite) formed because of a multistage diagenetic replacement of authigenic glauconite (glauconite–berthierine–chamosite) under reducing conditions of oxygen-depauperate pore- and seawater. Both lacking two major autapomorphies of the crown-group conulariids (mineralized periderm and quadrate cross section of the oral region of the periderm), the late Ediacaran triradial Vendoconularia and Terreneuvian Ilankirus represent stem-group conulariids.

UUID: http://zoobank.org/a2ce04fa-36a5-485a-806c-f13f4749fc7f

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babcock, L.E., and Feldman, R.M., 1986, The phylum Conulariida, in Hoffman, A., and Nitecki, M.H., eds., Problematic Fossil Taxa: New York, Oxford University Press, p. 135147.Google Scholar
Babcock, L.E., Feldman, R.M., and Wilson, A.T., 1987, Teratology and pathology of some Paleozoic conulariids: Lethaia, v. 20, p. 93105.CrossRefGoogle Scholar
Banerjee, S., Bansal, U., and Thorat, A.V., 2016, A review on palaeogeographic implications and temporal variation in glaucony composition: Journal of Palaeogeography, v. 5, p. 4371.CrossRefGoogle Scholar
Barrande, J., 1867, Systême Silurien du Centre de la Bohême. 1ère. Partie: Recherches Paléontologiques, Classe des Mollusques. Ordre des Ptéropodes: Prague, J. Barrande and W. Waagen, i–xv + 179 p. [in French]Google Scholar
Beaufort, D., Rigault, C., Billon, S., Billault, V., Inoue, A., Inoue, S., and Patrier, P., 2015, Chlorite and chloritization processes through mixed-layer mineral series in low-temperature geological systems—a review: Clay Minerals, v. 50, p. 497523.CrossRefGoogle Scholar
Bengtson, S., Conway Morris, S., Cooper, B.J., Jell, P.A., and Runnegar, B.N., 1990, Early Cambrian fossil from South Australia: Memoirs of the Association of Australasian Palaeontologists, v. 9, 364 p.Google Scholar
Bowring, S.A., Grotzinger, J.P., Isachsen, C.E., Knoll, A.H., Pelechaty, S.M., and Kolosov, P., 1993, Calibrating rates of early Cambrian evolution: Science, v. 261, p. 12931298.CrossRefGoogle ScholarPubMed
Brood, K., 1995, Morphology, structure, and systematics of the conulariids: GFF, v. 117, p. 121137.CrossRefGoogle Scholar
Conway Morris, S., and Chen, M., 1992, Carinachitids, hexangulaconulariids, and Punctatus: Problematic metazoans from the early Cambrian of South China: Journal of Paleontology, v. 66, p. 384406.CrossRefGoogle Scholar
Dahl, T.W., Connelly, J.N., Li, D., Kouchinsky, A., Gill, B.C., Porter, S., Maloof, A.C., and Bizzarro, M., 2019, Atmosphere–ocean oxygen and productivity dynamics during early animal radiations: Proceedings of the National Academy of Sciences of the United States of America, v. 119, p. 1935219361.CrossRefGoogle Scholar
Drits, V.A., Ivanovskaya, T.A., Sakharov, B.A., Gor'kova, N.V., Karpova, G.V., and Pokrovskaya, E.V., 2001, Pseudomorphous replacement of globular glauconite by mixed-layer chlorite–berthierine in the outer contact of dike: evidence from the lower Riphean Ust‘-Il'ya Formation, Anabar Uplift: Lithology and Mineral Resources, v. 36, p. 337352.CrossRefGoogle Scholar
Duda, J.-P., Love, G.D., Rogov, V.I., Melnik, D.S., Blumberg, M., and Grazhdankin, D.V., 2020, Understanding the geobiology of the terminal Ediacaran Khatyspyt Lagerstätte (Arctic Siberia, Russia): Geobiology, v. 18, p. 643662.CrossRefGoogle ScholarPubMed
Fernández-Landero, S., and Fernández-Caliani, J.C., 2021, Mineralogical and crystal-chemical constraints on the glauconite-forming process in Neogene sediments of the lower Guadalquivir Basin (SW Spain): Minerals, v. 11, art. 578.CrossRefGoogle Scholar
Ford, R.C., Van Iten, H., and Clark, G.R. II, 2016, Microstructure and composition of the periderm of conulariids: Journal of Paleontology, v. 90, p. 389399.CrossRefGoogle Scholar
Götte, A., 1887, Entwicklungs geschichte der Aurelia aurita und Cotylorhiza tuberculata. Abhandlungen der Entwicklungsgeschichte der Tiere. 4. Heft: Hamburg, Leopold Voss, 79 p. [in German]Google Scholar
Goy, Yu.Yu., and Grazhdankin, D.V., 2010, Macrofossils of skeletal organisms from the early Cambrian of Arctic Siberia, in Proceedings of the VI International Symposium “Evolution of Life on the Earth”: Tomsk, TML Press, p. 160163. [in Russian]Google Scholar
Grazhdankin, D., 2014, Patterns of evolution of the Ediacaran soft-bodied biota: Journal of Paleontology, v. 88, p. 269283.CrossRefGoogle Scholar
Grazhdankin, D.V., et al. , 2020, Quo vadis, Tommotian?: Geological Magazine, v. 157, p. 2234.CrossRefGoogle Scholar
Guo, J., Han, J., Van Iten, H., Song, Z., Qiang, Y., Wang, W., Zhang, Z., and Li, G., 2021, A ten-faced hexangulaconulariid from Cambrian Stage 2 of South China: Journal of Paleontology, v. 95, p. 957964.CrossRefGoogle Scholar
Hall, J.G., Smith, E.F., Tamura, N., Fakra, S.C., and Bosak, T., 2020, Preservation of erniettomorph fossils in clay-rich siliciclastic deposits from the Ediacaran Wood Canyon Formation, Nevada: Interface Focus, v. 10, https://doi.org/10.1098/rsfs.2020.0012CrossRefGoogle ScholarPubMed
Han, J., Li, G., Wang, X., Yang, X., Guo, J., Sasaki, O., and Komiya, T., 2017, Olivooides-like tube aperture in early Cambrian carinachitids (Medusozoa, Cnidaria): Journal of Paleontology, v. 92, p. 313.CrossRefGoogle Scholar
Harland, T.L., and Pickerill, R.K., 1987, Epizoic Schizocrania sp. from the Ordovician Trenton Group of Quebec, with comments on mode of life of conulariids: Journal of Paleontology, v. 61, p. 844849.CrossRefGoogle Scholar
Hillier, S., 2003, Chlorite in sediments, in Middleton, G.V., Church, M.J., Coniglio, M., Hardie, L.A., and Longstaffe, F.J., eds., Encyclopedia of Sediments and Sedimentary Rocks: Dordrecht, Springer, p. 123127.Google Scholar
Hughes, N.C., Gunderson, G.O., and Weedon, M.J., 2000, Late Cambrian conulariids from Wisconsin and Minnesota: Journal of Paleontology, v. 74, p. 828838.2.0.CO;2>CrossRefGoogle Scholar
Ivanovskaya, T.A., Geptner, A.R., Savichev, A.T., Zaitseva, T.S., Gor'kova, N.V., and Pokrovskaya, E.V., 2019, Glauconite in the lower Cambrian terrigenous–carbonate rocks, Olenek Uplift, north Siberia: Lithology and Mineral Resources, v. 54, p. 273291.CrossRefGoogle Scholar
Ivantsov, A.Yu., and Fedonkin, M.A., 2002, Conulariid-like fossil from the Vendian of Russia: a metazoan clade across the Proterozoic/Palaeozoic boundary: Palaeontology, v. 45, p. 12191229.CrossRefGoogle Scholar
Ivantsov, A.Yu., Vickers-Rich, P., Zakrevskaya, M.A., and Hall, M., 2019, Conical thecae of Precambrian macroorganisms: Paleontological Journal, v. 53, p. 11341146.CrossRefGoogle Scholar
Kaufman, A.J., Peek, S., Martin, A.J., Cui, H., Grazhdankin, D., Rogov, V., Xiao, S., Buchwaldt, R., and Bowring, S., 2012, A shorter fuse for the Cambrian Explosion?: Geological Society of America Abstracts with Programs, v. 44, p. 326.Google Scholar
Kenchington, C.G., and Wilby, P.R., 2014, Of time and taphonomy: preservation in the Ediacaran, in Laflamme, M., Schiffbauer, J.D., and Darroch, S.A.F., eds., Reading and Writing of the Fossil Records: Preservation Pathways to Exceptional Fossilization: The Paleontological Society Papers, v. 20, p. 101122.Google Scholar
Khomentovsky, V.V., and Karlova, G.A., 1993, Biostratigraphy of the Vendian–Cambrian beds and the lower Cambrian boundary in Siberia: Geological Magazine, v. 130, p. 2945.CrossRefGoogle Scholar
Kiderlen, H., 1937, Die Conularien. Über Bau und Leben der ersten Scyphozoa: Neues Jahrbuch für Geologie, Beilage-Band, v. 77, p. 113119.Google Scholar
Kouchinsky, A., and Bengtson, S., 2002, The tube wall of Cambrian anabaritids: Acta Palaeontologica Polonica, v. 47, p. 431444.Google Scholar
Kouchinsky, A., Bengtson, S., and Gershwin, L., 1999, Cnidarian-like embryos associated with the first shelly fossils in Siberia: Geology, v. 27, p. 609612.2.3.CO;2>CrossRefGoogle Scholar
Kouchinsky, A., Bengtson, S., Feng, W., Kutygin, R., and Val'kov, A., 2009, The lower Cambrian fossil anabaritids: affinities, occurrences and systematics: Journal of Systematic Palaeontology, v. 7, p. 241298.CrossRefGoogle Scholar
Kouchinsky, A., Bengtson, S., Clausem, S., and Verdasco, M.J., 2015, An early Cambrian fauna of skeletal fossils from the Emyaksin Formation, northern Siberia: Acta Palaeontologica Polonica, v. 60, p. 421512.Google Scholar
Laflamme, M., Darroch, S.A.F., Tweedt, S.M., Peterson, K.J., and Erwin, D.H., 2013, The end of the Ediacaran biota: extinction, biotic replacement, or Cheshire cat?: Gondwana Research, v. 23, p. 558573.CrossRefGoogle Scholar
Leme, J.M., Simões, M.G., Marques, A.C., and Van Iten, H., 2008, Cladistic analysis of the suborder Conulariina Miller and Gurley, 1896 (Cnidaria, Scyphozoa; Vendian–Triassic): Palaeontology, v. 51, p. 649662.CrossRefGoogle Scholar
Leme, J.M., Simões, M.G., and Van Iten, H., 2010, Phylogenetic Systematics and Evolution of Conulariids: Systematics and Evolution of a Problematical Fossil Taxon: the Family Conulariidae (Cnidaria; Ediacaran ⁄ Triassic): Saarbrücken, Lambert Academic Publishing, 49 p.Google Scholar
Lucas, S.G., 2012, The extinction of the conulariids: Geosciences, v. 2, https://doi.org/10.3390/geosciences2010001CrossRefGoogle Scholar
Malinky, J.M., 2009, First occurrence of Orthotheca Novák, 1886 (Hyolitha, Early Devonian) in North America: Journal of Paleontology, v. 83, p. 588596.CrossRefGoogle Scholar
Malinky, J.M., and Berg-Madsen, V., 1999, A revision of Holm's early Cambrian and early mid Cambrian hyoliths of Sweden: Palaeontology, v. 42, p. 2565.CrossRefGoogle Scholar
Markov, G., Rogov, V., Karlova, G., and Grazhdankin, D., 2019, Taphonomic bias in Cloudina distribution data from Siberia: Estudios Geológicos, v. 75, https://doi.org/10.3989/EGEOL.43590.559Google Scholar
Marusin, V.V., and Grazhdankin, D.V., 2018, Enigmatic large-sized tubular fossils from the Terreneuvian of Arctic Siberia: Paläontologische Zeitschrift, v. 92, p. 557560.CrossRefGoogle Scholar
Melnik, D.S., Parfenova, T.M., and Rogov, V.I., 2020, Biodegraded bitumens dispersed in Vendian (Neoproterozoic) rocks of the Khatyspyt Formation, northeastern Siberia: Georesources, v. 22, p. 3744.CrossRefGoogle Scholar
Meshkova, N.P., Zhuravleva, I.T., and Luchinina, V.A., 1973, Lower Cambrian and the lower part of the middle Cambrian of the Olenek Uplift, in Zhuravleva, I.T., ed., Problems of Palaeontology and Biostratigraphy in the Lower Cambrian of Siberia and the Far-East: Novosibirsk, Nauka, p. 194214. [in Russian]Google Scholar
Miller, S.A., and Gurley, W.F.E., 1896, New species of Palaeozoic invertebrates from Illinois and other states: Illinois State Museum of Natural History Bulletin, v. 11, 20 p.Google Scholar
Missarzhevsky, V.V., 1974, New data on the oldest fossils of the early Cambrian of the Siberian Platform, in Zhuravleva, I.T., and Rozanov, A.Yu., eds., Biostratigraphy and Palaeontology of the Lower Cambrian of Europe and Northern Asia: Moscow, Nauka, p. 179189. [in Russian]Google Scholar
Missarzhevsky, V.V., 1989, The oldest skeletal fossils and stratigraphy of the Precambrian–Cambrian boundary beds: Trudy Geologicheskogo Instituta AN SSSR, v. 443, 237 p. [in Russian]Google Scholar
Moore, R.C., and Harrington, H.J., 1956, Conulata, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part F, Coelenterata: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. F54F66.Google Scholar
Nagovitsin, K.E., Rogov, V.I., Marusin, V.V., Karlova, G.A., Kolesnikov, A.V., Bykova, N.V., and Grazhdankin, D.V., 2015, Revised Neoproterozoic and Terreneuvian stratigraphy of the Lena–Anabar Basin and north-western slope of the Olenek Uplift, Siberian Platform: Precambrian Research, v. 270, p. 226245.CrossRefGoogle Scholar
Naimark, E., Kalinina, M., Shokurov, A., Boeva, N., Markov, A., and Zaytseva, L., 2016, Decaying in different clays: implications for soft-tissue preservation: Palaeontology, v. 59, p. 583595.CrossRefGoogle Scholar
Naimark, E., Kalinina, M., Shokurov, A., Markov, A., Zaytseva, L., and Boeva, N., 2018, Mineral composition of host sediments influences the fossilization of soft tissues: Canadian Journal of Earth Sciences, v. 55, p. 12711283.CrossRefGoogle Scholar
Percival, I.G., 2009, Rare fossils (Conulata; Rostroconchia; Nautiloidea) from the Late Ordovician of central New South Wales: Proceedings of the Linnean Society of New South Wales, v. 130, p. 179191.Google Scholar
Peterson, K.W., 1979, Development of coloniality in Hydrozoa, in Larwood, G., and Rosen, B.R., eds., Biology and Systematics of Colonial Organisms: London, Academic Press, p. 105139.Google Scholar
Qian, Y., Van Iten, H., Cox, R., Zhu, M., and Zhuo, E., 1997, A brief account of Emeiconularia trigemme, a new genus and species of protoconulariid: Acta Micropalaeontologica Sinica, v. 14, p. 475488.Google Scholar
Raymond, P.E., 1905, The fauna of the Chazy Limestone: American Journal of Science, v. 20, p. 379383.Google Scholar
Rozanov, A.Yu, et al. , 1969, The Tommotian Stage and the Cambrian lower boundary problem: Trudy Geologicheskogo Instituta AN SSSR, v. 206, 380 p. [in Russian]Google Scholar
Sarsembaev, Z.A., and Marusin, V.V., 2019, Big guns of the Cambrian Explosion: macroskeletal benthic assemblage in the lower Cambrian Stage 2 of the Olenek Uplift, Arctic Siberia: Estudios Geológicos, v. 75, https://doi.org/10.3989/EGEOL.43595.568Google Scholar
Schiffbauer, J.D., Selly, T., Jacquet, S.M., Merz, R.A., Nelson, L.L., Strange, M.A., Cai, Y., and Smith, E.F., 2020, Discovery of bilaterian-type through-guts in cloudinamorphs from the terminal Ediacaran Period: Nature Communications, v. 11, n. 205, https://doi.org/10.1038/s41467-019-13882-zCrossRefGoogle ScholarPubMed
Sendino, C., Zágoršek, K., and Taylor, P.D., 2012, Asymmetry in an Ordovician conulariid cnidarian: Lethaia, v. 45, p. 423431.CrossRefGoogle Scholar
Shpunt, B.R., Shapovalova, I.G., Shamshina, E.A., Lazebnik, K.A., Savvinov, V.T., Permyakov, E.D., Kelle, E.Ya., and Yankovsky, E.V., 1979, Proterozoic Strata in the Northeastern Margin of the Siberian Platform: Novosibirsk, Nauka, 215 p. [in Russian]Google Scholar
Simões, M.G., Mello, L.H.C., Rodrigues, S.C., Leme, J.M., and Marques, A.C., 2000, Conulariid taphonomy as a tool in paleoenvironmental analysis: Revista Brasileira de Geociências, v. 30, p. 757762.CrossRefGoogle Scholar
Sinclair, G.W., 1942, The Chazy Conularida and their congeners: Annals of the Carnegie Museum, v. 20, p. 219240.CrossRefGoogle Scholar
Tang, D., Shi, X., Jiang, G., Zhou, X., and Shi, Q., 2017, Ferruginous seawater facilitates the transformation of glauconite to chamosite: an example from the Mesoproterozoic Xiamaling Formation of North China: American Mineralogist, v. 102, p. 23172332.CrossRefGoogle Scholar
Val'kov, A.K., 1982, Lower Cambrian Biostratigraphy of the Eastern Siberian Platform: Moscow, Nauka, 92 p. [in Russian]Google Scholar
Val'kov, A.K., and Sysoev, V.A., 1970, Cambrian angustiochreids of Siberia, in Bobrov, A.K., ed., Stratigraphy and Paleontology of the Proterozoic and Cambrian Deposits of the Eastern Siberian Platform: Yakutsk, Publishing House, p. 94100. [in Russian]Google Scholar
Van Iten, H., 1992, Microstructure and growth of the conulariid test: implications for conulariid affinities: Palaeontology, v. 35, p. 359372.Google Scholar
Van Iten, H., and Vhylasova, Z., 2004, Conulariids, in Webby, B., Droser, M.L., and Paris, F., eds., The Great Ordovician Biodiversification Event: New York, Columbia University Press, p. 119123.CrossRefGoogle Scholar
Van Iten, H., De Moraes Leme, J.M., Rodrigues, S.C., and Simões, M.G., 2005, Reinterpretation of a conulariid-like fossil from the Vendian of Russia: Palaeontology, v. 48, p. 619622.CrossRefGoogle Scholar
Van Iten, H., De Moraes Leme, J., Simões, M.G., Marques, A.C., and Collins, A.G., 2006, Reassessment of the phylogenetic position of conulariids (?Ediacaran–Triassic) within the subphylum Medusozoa (phylum Cnidaria): Journal of Systematic Palaeontology, v. 4, p. 109118.CrossRefGoogle Scholar
Van Iten, H., Tollerton, V.P. Jr., ver Straeten, C.A., Leme, J.M., Simões, M.G., and Rodrigues, S.C., 2013, Life mode of in situ Conularia in a Middle Devonian epibole: Palaeontology, v. 56, p. 2948.CrossRefGoogle Scholar
Van Iten, H., Leme, J.M., Pacheco, M.L.A.F., Simões, M.G., Fairchild, T.R., Rodrigues, F., Galante, D., Boggiani, P.C., and Marques, A.C., 2016, Origin and early diversification of phylum Cnidaria: key macrofossils from the Ediacaran System of North and South America, in Goffredo, S., and Dubinsky, Z., eds., The Cnidaria, Past, Present and Future: Switzerland, Springer International, p. 3140.CrossRefGoogle Scholar
Van Iten, H., Gutiérrez-Marco, J.C., Muir, L.A., Simões, M.G., and Leme, J.M., 2018, Ordovician conulariids (Scyphozoa) from the upper Tiouririne Formation (Katian), eastern Anti-Atlas Mountains, southern Morocco, in Hunter, A.W., Álvaro, J.J., Lefebvre, B., van Roy, P., and Zamora, S., eds., The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco: Geological Society of London Special Publications No. 485, p. 123.Google Scholar
Van Iten, H., Cournoyer, M.E., and Coyne, M., 2020, Designation of a neotype and paraneotype for Conularina triangulata (Raymond, 1905) (Upper Ordovician, eastern North America): Journal of Paleontology, v. 94, 796797.CrossRefGoogle Scholar
Verrill, A.E., 1865, Classification of polyps (extract condensed from Synopsis of the Polyps and Corals of the North Pacific Exploring Expedition under Commodore C. Ringgold and Captain John Rogers, U. S. N.): Communications of the Essex Institute, v. 4, p. 145152.Google Scholar
Vishnevskaya, I.A., Letnikova, E.F., Vetrova, N.I., Kochnev, B.B., and Dril, S.I., 2017, Chemostratigraphy and detrital zircon geochronology of the Neoproterozoic Khorbusuonka Group, Olenek Uplift, northeastern Siberian Platform: Gondwana Research, v. 51, p. 255271.CrossRefGoogle Scholar
Wood, R., Liu, A.G., Bowyer, F., Wilby, P.R., Dunn, F.S., Kenchington, C.G., Hoyal Cuthill, J.F., Mitchell, E.G., and Penny, A., 2019, Integrated records of environmental change and evolution challenge the Cambrian Explosion: Nature Ecology & Evolution, v. 3, p. 528538.CrossRefGoogle ScholarPubMed
Worden, R.H., and Morad, S., 2003, Clay minerals in sandstones: controls on formation, distribution and evolution: International Association of Sedimentologists, Special Publications, v. 34, p. 341.Google Scholar
Yang, B., Warren, L.V., Steiner, M., Smith, E.F., and Liu, P., 2021, Taxonomic revision of Ediacaran tubular fossils: Cloudina, Sinotubulites and Conotubus: Journal of Paleontology, https://doi.org/10.1017/jpa.2021.95Google Scholar