Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-02T11:27:11.028Z Has data issue: false hasContentIssue false

Onset of Maturity and Ontogenetic Tagmatization of the Pygidium in the Development of Lonchopygella megaspina (Trilobita, Later Furongian, Cambrian)

Published online by Cambridge University Press:  15 October 2015

Xuejian Zhu
Affiliation:
State Key Laboratory on Palaeontology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China, ;
Nigel C. Hughes
Affiliation:
Department of Earth Sciences, University of California, Riverside, California 92521, U.S.A.,
Shanchi Peng
Affiliation:
State Key Laboratory on Palaeontology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China, ;

Abstract

Onset of maturity in trilobites is generally considered to occur when the last trunk segment is released into the thorax, marking the start of the holaspid stage. Here we describe striking morphological changes that occur within the holaspid ontogeny of Lonchopygella megaspina Zhou in Zhou et al., 1977, which include the effacement of dorsal furrows, the rapid and complete degeneration of pygidial lateral spines, and the increasing prominence of a pygidial axial spine. These notable changes, which are not coincident with the onset of the holaspid phase, emphasize that the onset of maturity in trilobites should be viewed on a character-by-character basis before assessing whether the exoskeleton as a whole can be described as mature. The holaspid pygidial condition in L. megaspina may represent an intermediate step in an evolutionary transition in the number, form, and allocation of segments in the tsinaniid trunk. Pygidial transition from a dynamically changing complement of segments in the meraspid phase to a static complement in the holaspid phase was accompanied by a marked change in the extent to which segment boundaries defined pygidial structure. Attaining this static complement allowed subsequent pygidial development to emphasize its structure as an integrated unit in which internal segmental boundaries became diffuse, a continuous margin to become prominent, and an elongated terminal spine, first evident at onset of epimorphic growth, to develop allometrically. Trilobite body development suggests that while the segmented construction placed constraints on how morphology varied, the influence of these constraints diminished following completion of thoracic segment construction. Selective premium for a distinct posterior tagma might favor the early ontogenetic acquisition of such a structure, and could have been a driver of the repeated trend toward caudalization witnessed among derived trilobite clades.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Budd, G. E. 1999. Does evolution in body patterning genes drive morphological change or vice versa? BioEssays, 21 (4):326332.3.0.CO;2-0>CrossRefGoogle Scholar
Chatterton, B. D. E. 1971. Taxonomy and ontogeny of Siluro-Devonian trilobites near Yass, New South Wales. Palaeontographica, 137A:1108.Google Scholar
Chen, J. Y., Zhou, Z. Y., Zou, X. P., Lin, Y. K., Yang, X. C., Li, Z. K., Qi, D. L., Wang, S. H., Xu, H. Z., and Zhu, X. D. 1980. Outline of Ordovician deposits and faunas in Shandong, North Anhui, and North Jiangsu, East China. Memories of Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 16:159195.Google Scholar
Deprat, J. 1915. Etudes géologiquessur la région se-pentrionale du Haut Tonkin. Mémoires de Service Géologique de I' Indochine, 4 (4):1175.Google Scholar
Duan, J. Y., An, S. L., Liu, P. J., Peng, X. D., and Zhang, L. Q. 2005. The Cambrian Stratigraphy, Fauna and Palaeogeography in Eastern part of North China Plate. Yayuan Press, Hong Kong, 255p.Google Scholar
Endo, R. and Resser, C. E. 1937. The Sinian and Cambrian formations and fossils of southern Manchoukuo. Manchurian Science Museum Bulletin, 1:103301.Google Scholar
Esteve, J. In press. Intraspecific variability in paradoxidid trilobites from the Purujosa trilobite assemblage (middle Cambrian, northeast Spain). Acta Palaeontologica Polonica.Google Scholar
Feist, R. and Lerosey-Aubril, R. 2008. Assessing the hypothesis of a third tagma in scutelluid trilobites: Arguments from ontogenetic, functional and evolutionary perspectives, p. 127133. InRábano, I., Gozalo, R. and Garcia-Bellido, D.(eds.), Advances in Trilobite Research, Volume Cuadernos del MuseoGeominero, No. 9. Instituto Geológico y Minero de España, Madrid.Google Scholar
Fortey, R. A. and Hughes, N. C. 1998. Brood pouches in trilobites. Journal of Paleontology, 74:638649.CrossRefGoogle Scholar
Fusco, G., Garland, T. J., Hunt, E., and Hughes, N. C. 2012. Developmental trait evolution in trilobites. Evolution, 66:314329.CrossRefGoogle ScholarPubMed
Fusco, G., Hughes, N. C., Webster, M., and Minelli, A. 2004. Exploring developmental modes in a fossil arthropod: Growth and trunk segmentation of the trilobite Aulacopleura konincki. The American Naturalist, 163:167183.CrossRefGoogle Scholar
Goloboff, P. A., Farris, J. S., and Nixon, K. C. 2008. TNT, a free program for phylogenetic analysis. Cladistics, 24:774786.CrossRefGoogle Scholar
Han, N. R. and Chen, G. Y. 2004. Discovery of a complete Dictyella (trilobite) carapace fossil in Guangxi and its significance. Acta Palaeontologica Sinica, 43:416419.Google Scholar
Hughes, N. C. 1994. Ontogeny, intraspecific variation, and systematic of the late Cambrian trilobite Dikelocephalus. Smithsonian Contributions to Paleobiology, 79:189.CrossRefGoogle Scholar
Hughes, N. C. 2003.Trilobite body patterning and the evolution of arthropod tagmosis. BioEssays, 25:386395.CrossRefGoogle ScholarPubMed
Hughes, N. C. 2007. The evolution of trilobite body patterning. Annual Review of Earth and Planetary Sciences, 35:401434.CrossRefGoogle Scholar
Hughes, N. C. and Chapman, R. E. 1995. Growth and variation in the Silurian proetide trilobite Aulacopleura konincki and its implications for trilobite palaeobiology. Lethaia, 28:333353.CrossRefGoogle Scholar
Hughes, N. C. and Fortey, R. A. 1995. Sexual dimorphism in trilobites, with an Ordovician case study, p. 419421. InCooper, J. C., Droser, M. L. and Finney, S. C.(eds.), Ordovician Odyssey. SEPM Pacific Section, Los Angeles.Google Scholar
Hughes, N. C., Haug, J. T., and Waloszek, D. 2008. Basal euarthropod development: A fossil-based perspective, p. 79296. InMinelli, A. and Fusco, G.(eds.), Evolving Pathways: Key Themes in Evolutionary Developmental Biology. Cambridge University Press, Cambridge.Google Scholar
Hughes, N. C., Minelli, A., and Fusco, G. 2006. The ontogeny of trilobite segmentation: A comparative approach. Paleobiology, 32:602627.CrossRefGoogle Scholar
Hughes, N. C., Myrow, P. M., McKenzie, N. R., Harper, D. A. T., Bhargava, O. N., Tangri, S. K., Ghalley, K. S., and Fanning, C. M. 2011. Cambrian rocks and faunas of the Wachi La, Black Mountains, Bhutan. Geological Magazine, 148:351379.CrossRefGoogle Scholar
Hupé, P. 1955. Classification des trilobites. Annales de Paléontologie, 41:91325.Google Scholar
Jacob, C. and Bourret, R. 1920. Iteneraire Geologique dans le Nord du Tonkin. Bulletin du Service geologique de l'Indochine, 9:149.Google Scholar
Kobayashi, T. 1933. Upper Cambrian of the Wuhutsui Basin, Liaotung, with special reference to the limit of the Chaumitien (or upper Cambrian), of eastern Asia, and its subdivision. Japanese Journal of Geology and Geography, 11 (1/2):55155.Google Scholar
Kobayashi, T. 1944. On the Cambrian Formation in Yunnan and Haut-Tonkin and the trilobites contained. Japanese Journal of Geology and Geography, 19:107138.Google Scholar
Kobayashi, T. 1967. The Cambro–Ordovician formations and faunas of South Korea, Part 10. Stratigraphy of the chosen group in Korea and South Manchuria and its relation to the Cambro–Ordovician formations of other areas. Section C. The Cambrian of eastern Asia and other parts of the continent. Journal of the Faculty of Science, University of Tokyo, Section II, 16:381535.Google Scholar
Lee, J. G., Choi, D. K., and Pratt, B. R. 2001. A teratological pygidium of the Upper Cambrian trilobite Eugonocare (Pseudeugonocare) bispinatum from the Machari Formation, Korea. Journal of Paleontology, 75:216218.2.0.CO;2>CrossRefGoogle Scholar
Liu, Y. R. 1982. Trilobita, p. 290347. InShouqi Li (ed.), Palaeontological Atlas of Hunan. Ministry of Geology and Mineral Resources, Geological Memoirs, Series 2, Stratigraphy and Palaeontology No. 1. Geological Publishing House, Beijing.Google Scholar
Ludvigsen, R. 1979. The Ordovician trilobite Pseudogygites Kobayashi in eastern and arctic North America. Life Sciences Contributions of the Royal Ontario Museum, 120:141.Google Scholar
Luo, H. L. 1984. Subdivision and correlation of the Cambrian system in southeastern Yunnan. Acta Geologica Sinica, 2:8796.Google Scholar
Luo, H. L., Hu, S. X., Hou, S. G., Gao, H. G., Zhan, D. Q., and Li, W. C. 2009. Cambrian stratigraphy and trilobites from Southeastern Yunnan, China. Yunnan Science and Technology Press, Kunming, 252p.Google Scholar
Mansuy, H. 1915. Faunes cambriennes du Haut-Tonkin. Mémoires du Service Géologique de I' Indo-Chine, 4 (2):135.Google Scholar
Mansuy, H. 1916. Faunes Cambriennes de I'Extrême-Orient méridional. Mémoires du Service Géologique de L'Indochine, 5 (1):144.Google Scholar
McNamara, K. J. 1981. Paedomorphosis in Middle Cambrian xystridurine trilobites. Alcheringa, 5:209224.CrossRefGoogle Scholar
McNamara, K. J. 1983. Progenesis in trilobites. Special Papers in Palaeontology, 30:5968.Google Scholar
Moczek, A. P. 2006. Pupal remodeling and the development and evolution of sexual dimorphism in horned beetles. The American Naturalist, 168:711729.CrossRefGoogle ScholarPubMed
Moczek, A. P., Cruickshank, T. E., and Shelby, A. 2006. When ontogeny reveals what phylogeny hides: Gain and loss of horns during development and evolution of horned beetles. Evolution, 60:23292341.CrossRefGoogle ScholarPubMed
Ogg, J. G., Ogg, G., and Gradstein, F. M. 2008. The Concise Geological Timescale. Cambridge University Press, Cambridge, 177p.Google Scholar
Owen, A. W. 1985. Trilobite abnormalities. Transactions of the Royal Society of Edinburgh, 76:255272.CrossRefGoogle Scholar
Park, T. Y. and Choi, D. K. 2009. Post-embryonic development of the Furongian (late Cambrian) trilobite Tsinania canens: Implications for life mode and phylogeny. Evolution and Development, 11:441455.CrossRefGoogle ScholarPubMed
Perez, C. 1928. Caractères sexuelles chez un crabe oxyrhynque (Macropodia rostrata L.). Comptes Rendus Hebdomadaires de I'Académie des Sciences, Paris, 188:9193.Google Scholar
Ramsköld, L. 1984. Silurian odontopleurid trilobites from Gotland. Palaeontology, 27:239264.Google Scholar
Raw, F. 1925. The development of Leptoplastus salteri and other trilobites (Olenidae, Ptychoparidae, Conocoryphidae, Paradoxidae, Phacopidae, and Mesonacidae). Quarterly Journal of the Geological Society of London, 81:223324.CrossRefGoogle Scholar
Raymond, P. E. 1920. Some new Ordovician trilobites. Bulletin of the Museum of Comparative Zoology, Harvard, 64:273296.Google Scholar
Rudkin, D. M. 1985. Exoskeletal abnormalities in four trilobites. Canadian Journal of Earth Sciences, 22:479483.CrossRefGoogle Scholar
Saurin, E. 1956. Le Cambrien en Indochine. El Sistema Cambrico, su Paleogeografia etc. Part 1, XX International Geological Congress, XX Session, Mexico, 393415.Google Scholar
Shergold, J. H. 1972. Late Upper Cambrian trilobites from the Gola Beds, western Queensland. Bureau of Mineral Resources Geology and Geophysics Australia Bulletin, 112:1127.Google Scholar
Shergold, J. H. 1975. Late Cambrian and early Ordovician trilobites from the Burke River Structural Belt, western Queensland, Australia. Bureau of Mineral Resources Geology and Geophysics Australia Bulletin, 153:1251.Google Scholar
Simpson, A., Hughes, N. C., Kopaska-Merkel, D. C., and Ludvigsen, R. 2005. Development of the caudal exoskeleton of the pliomerid trilobite Hintzeia plicamarginis new species. Evolution and Development, 7:528541.CrossRefGoogle ScholarPubMed
Speyer, S. E. and Brett, C. E. 1985. Clustered trilobite assemblages in the Middle Devonian Hamilton Group. Lethaia, 18:85103.CrossRefGoogle Scholar
Stubblefield, C. J. 1926. Notes on the development of a trilobite, Shumardia pusilla (Sars). Journal of the Linnean Society of London, Zoology, 35:345372.CrossRefGoogle Scholar
Sun, Y. Z. 1924. Contributions to the Cambrian faunas of North China. Palaeontologia Sinica (Series B), 1 (4):1109.Google Scholar
Sun, Y. Z. and Xiang, L. W. 1979. Late Upper Cambrian trilobite fauna from western Yunnan. Bulletin of the Chinese Academy of Geological Sciences, 1 (1):117.Google Scholar
Walcott, C. D. 1905. Cambrian faunas of China. Proceedings of the United States National Museum, 29 (1415):1106.CrossRefGoogle Scholar
Walcott, C. D. 1914. The Cambrian faunas of eastern Asia. Smithsonian Miscellaneous Collections, 64:175.Google Scholar
Waloszek, D. 1993. The Upper Cambrian Rebbachiella and the phylogeny of Branchiopoda and Crustacea. Fossils and Strata, 32:1202.CrossRefGoogle Scholar
Webster, M. 2009. Ontogeny, evolution, and systematics of the effaced early Cambrian trilobites Peachella Walcott, 1910 and Eopeachella New Genus (Olenellodea). Journal of Paleontology, 83:197218.CrossRefGoogle Scholar
Zhang, W. T. and Jell, P. A. 1987. Cambrian trilobites of North China: Chinese Cambrian trilobites housed in the Smithsonian Institution. Science Press, Beijing, 459p.Google Scholar
Zhou, T. M., Liu, Y.R., Mong, X. S., and Sun, Z. H. 1977. Trilobites, p. 104266. InAtlas of the Palaeontology of Central and Southern China, Volume 1, Early Palaeozoic. Geological Publishing House, Beijing.Google Scholar
Zhu, X. J. 2005. Trilobite faunas from Upper Furongian (Cambrian) of Guangxi with special notes on malformation, dimorphism and the function of eye ridges. PhD thesis, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 224p. (In Chinese)Google Scholar
Zhu, X. J., Hu, Y. S., Bian, R. C., Du, S. X., and Ding, D. L. 2011. Some middle and upper Cambrian trilobites from southeastern Yunnan. Acta Palaeontologica Sinica, 50:118131.Google Scholar
Zhu, X. J., Hughes, N. C., and Peng, S. C. 2007. On a new species of Shergoldia Zhang and Jell, 1987 (Trilobita), the family Tsinaniidae and the order Asaphida. Memoirs of the Association of Australasian Palaeontologists, 34:243253.Google Scholar
Zhu, X. J., Hughes, N. C., and Peng, S. C. 2010. Ventral structure and ontogeny of the late Furongian (Cambrian) trilobite Guangxiaspis guangxiensis Zhou, 1977 and the diphyletic origin of the median suture. Journal of Paleontology, 84:493504.CrossRefGoogle Scholar
Zhu, X. J. and Peng, S. C. 2006. Eoshumardia (Trilobita, Cambrian), a junior synonym of Koldinioidia. Alcheringa, 30:183189.Google Scholar
Zong, R. W. 2010. A complete Fengshanian (late Cambrian) trilobite fossil from North Anhui. Fossil, 3:4950.Google Scholar