Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-02T18:46:09.368Z Has data issue: false hasContentIssue false

Paleoecology of giant Inoceramidae (Platyceramus) on a Santonian (Cretaceous) seafloor in Colorado

Published online by Cambridge University Press:  14 July 2015

Erle G. Kauffman
Affiliation:
Department of Geological Sciences, Indiana University, 1001 E. Tenth Street, Bloomington 47405
Peter J. Harries
Affiliation:
Department of Geology, University of South Florida, Tampa, SCA 528, 4202 East Fowler Avenue, Tampa 33620-5201
Christian Meyer
Affiliation:
Naturhistorische Museum Basel, Augustinergasse 2, 4001-Basel, Switzerland
Tomas Villamil
Affiliation:
Ecopetrol, Calle 37, No. 8-43 Piso 8, Bogata, Colombia
Claudia Arango
Affiliation:
Ecopetrol, Calle 37, No. 8-43 Piso 8, Bogata, Colombia
Glenn Jaecks
Affiliation:
Paleontological Institute Ivana Rakovca, Slovenian Academy of Sciences and Arts, Novi trg 2, 1000 Ljubljana, Slovenia

Abstract

Giant Middle Coniacian to Lower Campanian Platyceramus Seitz is among the largest Cretaceous bivalves, commonly reaching an axial length of over 1 m, and occasionally over 2–3 m in size. the genus is characterized by its large size, very low convexity, normal inflation limited mostly to the umbonal area, and flattened flanks. It is especially common in moderately deep calcareous shale facies, as well as in chalks and limestones of the Niobrara Formation and equivalents. Preferred facies contain abundant pyrite, elevated total organic carbon (TOC), and very low biotic diversity. the genus maintains its giant size in these facies, and becomes more abundant. It clearly prefers dysoxic facies. As such, it probably is chemosymbiotic; photosymbiosis is almost ruled out because of inferred water depths of 200–350 m. It is also found more sparsely, and of smaller size, in oxygenated facies, including shoreface sandstone. the study area contains over 81 giant-sized Platyceramus platinus (Logan, 1898) on a single bedding plane; there are very few small ones. This allows spacing, orientation, and size analysis to be performed on an adult population.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barlow, L. M. 1985. Event stratigraphy, paleoenvironments, and petroleum source rock potential of the lower Niobrara Formation (Cretaceous), Northern Front Range, Colorado. Unpublished , , 288 p.Google Scholar
Barlow, L. M., and Kauffman, E. G. 1985. Depositional cycles in the Niobrara Formation, Colorado Front Range, p. 199208. In Pratt, L. M., Kauffman, E. G., and Zelt, F. B. (eds.), Fine-grained Deposits and Biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic Sedimentary Processes. Fieldtrip Guidebook 4, Tulsa, Society of Economic Paleontologists and Mineralogists.CrossRefGoogle Scholar
Barrios, C. 1879. Sur quelques especes nouvelles ou peu connues du terrain Cretace du Nord de la France. Annales Geologique du Nord, 6:449457.Google Scholar
Berry, W. B. N., and Barker, R. M. 1974. Growth increments in fossil and modern bivalves, p. 925. In Rosenberg, and Runcorn, (eds.), Growth Rhythms and the History of Earth's Rotation. Wiley Interscience.Google Scholar
Boehm, J. 1915. Uber die untersenon fauna bei Bergsteinfurt und Arhaus. Johrbuch der Preus s. geologische landersanst., Berlin, 36, 1:423428.Google Scholar
Bottjer, D. 1978. Paleoecology, ichnology and depositional environments of Upper Cretaceous chalks (Annona Formation, Chalk Member of Saratoga Formation), southwestern Arkansas. Doctoral dissertation, Indiana University, Bloomington, 424 p.Google Scholar
Cobabe, E. A. 1990. Detection of chemosybiosis in the fossil record; the use of stable isotopes in the organic matrix of lucinid bivalves. Abstracts with Programs, Geological Society of America, 22(7):36.Google Scholar
Conrad, T. A. 1857. Descriptions of Cretaceous and Tertiary Fossils, p. 141174, 21 pls. In Emory, W. H. (ed.), Report of the United States and Mexican Boundary Survey, 1(2).Google Scholar
Cox, L. R. 1969. Bivalvia, p. N314N321, pl. C46–C49. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Pt. N. Mollusca 6. The Geological Society of America and the University of Kansas Press, Lawrence.Google Scholar
De Mercey, N. 1880. Remarques sur la classification du terrain crétacé superieur. Bulletin de la Societé Geologique de la France, series 3, xvii, no. 6:355386.Google Scholar
Dodd, J. R., and Stanton, R. J. Jr. 1990. Marine Paleoecology, Concepts and Applications. John Wiley and Sons, New York, 559 p.Google Scholar
Duff, K. L. 1975. Palaoecology of a bituminous shale; the lower Oxford Clay of central England. Palaeontology, 18:443482.Google Scholar
Grossman, E. 1993. Evidence that inoceramid bivalves were benthic and harbored chemosynthetic symbionts: Comment. Geology, 21:9495.2.3.CO;2>CrossRefGoogle Scholar
Hallam, A. 1967. The interpretation of size-frequency distributions in molluscan death assemblages. Palaeontology, 10:2542.Google Scholar
Hattin, D. E. 1965. Stratigraphy of Graneros Shale (Upper Cretaceous) in central Kansas. Kansas Geological Survey Bulletin, 178, 83 p.Google Scholar
Hattin, D. E. 1982. Stratigraphy and depositional environments of the Smoky Hill Chalk Member, Niobrara Chalk (Upper Cretaceous) of the type area, western Kansas. Kansas Geological Survey Bulletin, 255, 108 p.Google Scholar
Hattin, D. E., Seimers, C., and Stewart, G. F. 1978. Guidebook: Upper Cretaceous stratigraphy and depositional environments of western Kansas. Kansas Geological Survey Guidebook Series, 3, 102 p.Google Scholar
Hay, W. W., Eicher, D. L., and Diner, R. 1993. Paleoceanography of the Cretaceous Western Interior Seaway, p. 297318. In Caldwell, W. G. E. and Kauffman, E. G. (eds.), Cretaceous Evolution of the Western Interior Basin, North America. Special Publication 39, Geological Association of Canada.Google Scholar
Heinz, R. 1932. Aus der neuen systematik der Inoceramen (Inoceramen XVII). Mittengun Mineralogie - Geologie Staatinstitute, Hamburg, 15:126.Google Scholar
Kaplan, E. L., and Meier, P. 1958. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53:457481.CrossRefGoogle Scholar
Kauffman, E. G. 1967. Coloradoan macroinvertebrate assemblages, central Western Interior, United States, p. 67143. In Paleoenvironments of the Cretaceous Seaway-A Symposium. May 1967, Colorado School of Mines, Golden.Google Scholar
Kauffman, E. G. 1971. Cretaceous marine cycles of the Western Interior. The Mountain Geologist, 6:227245.Google Scholar
Kauffman, E. G. 1975. Dispersal and biostratigraphic potential of Cretaceous benthonic Bivalvia in the Western Interior. Geological Association of Canada Special Paper, 13:193194.Google Scholar
Kauffman, E. G. 1977. Illustrated guide to biostratigraphically important Cretaceous macrofossils, Western Interior Basin, U.S.A., p. 225274. In Cretaceous Facies, Faunas, and Paleoenvironments Across the Western Interior Basin. The Mountain Geologist, 14.Google Scholar
Kauffman, E. G. 1978a. Benthic environments and paleoecology of the Posidonienscheifer (Toarcian). Neues Jahrbuch, Geologie and Palaontologie, Abhandlungun B, 175:1836.Google Scholar
Kauffman, E. G. 1978b. Evolutionary rates and patterns among Cretaceous bivalves. Philosophical Transactions of the Royal Society of London, B, 284:277304.Google Scholar
Kauffman, E. G. 1979. Bivalvia, p. 123146. In Fairbridge, R. and Jablonski, D. (eds.), The Encyclopedia of Paleontology: Encyclopedia of Earth Sciences, 7. Dowden, Hutchinson and Ross, Stroudsberg, Pennsylvania.Google Scholar
Kauffman, E. G. 1981. Biological Response to Cretaceous Sealevel Fluctuations. Chevron Oil Company, Annual Paleontology Symposium, New Orleans, 12.Google Scholar
Kauffman, E. G. 1982. The community structure of “Shell Islands” on oxygen-depleted substrates in Mesozoic dark and laminated carbonates, p. 502503. In Einsele, G. and Seilacher, A. (eds.), Cyclic and Event Stratigraphy. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Kauffman, E. G. 1984. The fabric of Cretaceous marine extinctions, p. 151246. In Berggren, W. A. and Van Couvering, J. A. (eds.), Catastrophes and Earth History. Princeton University Press, Princeton, New Jersey.Google Scholar
Kauffman, E. G. 1985. Paleobiogeography and evolutionary dynamic in the Cretaceous Western Interior Seaway of North America, p. 273306. In Westermann, G. E. G. (ed.), Jurassic–Cretaceous Biochronology and Paleogeography of North America. Geological Association of Canada Special Paper, 27.Google Scholar
Kauffman, E. G. 1992. The evolution of Cretaceous biostratigraphy in the Western Interior of North America. Society of Sedimentary Geology, 1992 Theme Meeting, Mesozoic of the Western Interior, Fort Collins, Colorado. Abstract Volume, 37, p. 33.Google Scholar
Kauffman, E. G. 1993. Paleoenvironmental significance of benthic community structure and diversity thresholds in low-oxygen Cretaceous black shale facies. Geological Society of America, Abstracts with Programs, 25(6):240.Google Scholar
Kauffman, E. G., and Caldwell, W. G. E. 1993. The Western Interior Basin in space and time, p. 130. In Caldwell, W. G. E. and Kauffman, E. G. (eds.), Evolution of the Western Interior Basin. Geological Association of Canada, GAC Special Paper, 39.Google Scholar
Kauffman, E. G., and Runnegar, B. 1975. Atomodesma (Bivalvia) and Permian species from the United States. Journal of Paleontology, 49:2341.Google Scholar
Kauffman, E. G., and Sageman, B. B. 1990. Biological sensing of benthic environments in dark shales and related oxygen-restricted facies, p. 125138. In Ginsburg, R. N. and Beaudoin, B. (eds.), Cretaceous Resources, Events, and Rhythms. Kluwer Press, Amsterdam.Google Scholar
Kent, J. C. 1967. Microfossils from the Niobrara Formation (Cretaceous) and equivalent strata in northern and western Colorado. Journal of Paleontology, 41:14331456.Google Scholar
Klinger, H. G., Kauffman, E. G., and Kennedy, W. J. 1980. Upper Cretaceous ammonites and inoceramids from the off-shore Alphard Group of South Africa. Annals of the South African Museum, 82(7):127.Google Scholar
Logan, W. N. 1898. The invertebrates of the Benton, Niobrara, and Fort Pierre groups. University Geological Survey of Kansas, Paleontology, Pt. 1, Upper Cretaceous, 4:431518, pls. 86–120.Google Scholar
Loh, H., Maul, B., Prauss, M., and Riegel, W. 1986. Primary production, maceral formation and carbonate species in the Posidonia Shale of NW Germany. Mitteilung der Geologisch-Palaontologischen Institut der Universitat Hamburg, 60:397421.Google Scholar
MacLeod, K. G., and Hoppe, K. A. 1992. Evidence that inoceramid bivalves were benthic and harbored chemosymbiontic symbionts. Geology, 20:117120.2.3.CO;2>CrossRefGoogle Scholar
Mercey, M. N. de. 1877. Description de l'Inoceramus mantelli . Memoires Societe Linnean Nord France, 4:224341, 2 pls., Amiens.Google Scholar
Miller, H. W. 1968. Invertebrate fauna and environment of deposition of the Niobrara Formation (Cretaceous) of Kansas. Fort Hays Studies, n.s., 8:190.Google Scholar
Pemberton, S. G., and Frey, R. W. 1985. The Glossifungites ichnofacies: Modern examples from the Georgia Coast, USA, p. 237259. In Curran, H. A. (ed.), Biogenic Structures: Their Use in Interpreting Depositional Environments. Society for Economic Paleontologists and Mineralogist, SEPM Special Publication, 35.CrossRefGoogle Scholar
Ribi, G., Burla, H., and Ochsner, P. 1976. Beobachtungen uber vorkommen, abundanzen und korpergrossen der gattung Astropecten. Helgolander Wissenschaftliche Meeresuntersuchungen, 28:235241.CrossRefGoogle Scholar
Rio, M., Roux, M., Renard, M., and Schien, E. 1993. Chemical and isotopic features of present day bivalve shells from hydrothermal vents or cold seeps. Palaios, 7:351360.CrossRefGoogle Scholar
Rio, M., Roux, M., Renard, M., Durault, Y. H., Davanzo, F., and Clauser, S. 1986. Carbon Isotope fractionation of Bivalvia depending on chemoautotrophic primary production in abyssal and littoral environment. Comptes Rendus del Academie des Sciences, series 2, Mecanique, Physique, Chimie, Sciences del'Unives, Sciences de la Terre, 303(17):15331556.Google Scholar
Rodriguez, T. E. 1985. High resolution event stratigraphy and interpretation of the depositional environments of the upper Smoky Hill Member, Niobrara Formation of the northeast Denver Basin. , , 196 p.Google Scholar
Sageman, B. B., Arthur, M. A., and Dean, W. E. 1992. Use of carbon and trace element data to recognize trends in sedimentation rate: Application to sequence stratigraphy of the Greenhorn Cyclothem. In Mesozoic of the Western Interior; Abstracts, Society for Sedimentary Geology, p. 59.Google Scholar
Sageman, B. B., Wignall, P. B., and Kauffman, E. G. 1991. Biofacies model of oxygen deficient facies in epicontinental seas: Tool for paleoenvironmental analysis, p. 524564. In Einsele, G., Ricken, W., and Seilacher, A. (eds.), Cycles and Events in Stratigraphy. Springer–Verlag, Berlin.Google Scholar
Sageman, B. B., Arthur, M. A., Suits, N., and Dean, W. E. 1993. Production or preservation? Integrated paleoecological-geochemical analysis of the Greenhorn Limestone. Geological Society of America, Abstracts with Programs, 25(6):240.Google Scholar
Savrda, C. E., and Bottjer, D. J. 1986. Trace fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology, 14:36.2.0.CO;2>CrossRefGoogle Scholar
Scott, G. R., and Cobban, W. A. 1964. Stratigraphy of the Niobrara Formation at Pueblo, Colorado. United States Geological Survey Professional Paper, 454-L:L1L30.Google Scholar
Scott, R. W., and Taylor, A. M. 1977. Upper Cretaceous environments and paleocommunities in the southern Western Interior, p. 155173. In Kauffman, E. G. (ed.), Cretaceous Facies, Faunas, and Paleoenvironments Across the Western Interior Basin. The Mountain Geologist, 14.Google Scholar
Seilacher, A. 1985. Bivalve morphology and function, p. 85101. In Broadhead, T. W. (ed.), Studies in Geology, 13.Google Scholar
Seilacher, A. 1982. General remarks about event deposits, p. 161174. In Einsele, G. and Seilacher, A. (eds.), Cyclic and Event Stratification. Springer–Verlag, New York.CrossRefGoogle Scholar
Seilacher, A., and Westphal, F. 1971. Fossil-Lagerstatten, p. 327335. In Müller, German (ed.), Sedimentology of Parts of Central Europe. W. Kramer, Frankfurt am Main.Google Scholar
Seitz, O. 1962. Uber Inoceramus (Platyceramus) mantelli Mercey (Barrois) aus dem Coniac und die Frage des Byssus-Ausschnittes bei Oberkreide Inoceramen. Geologische Jahrbuch, Bd. 79:353386, 4 pls., 6 figs.Google Scholar
Seitz, O. 1965. Die Inoceramen des Sarton und Unter-Campan von Nordwestdeutschland II. Teil (Biometie, Dimorphismus und Stratigraphie des Untergattung Sphenoceramus J. Böhm). Beihefte zum Geologischen Jarhbuch, Heft 69, 194 p., 26 tables.Google Scholar
Seitz, O. 1967. Die Inoceramen des Santon und Unter-Campan von Nordwest Deutschland, III Teil. Beihefte zum Geologischen Jahrbuch, Heft 75, Hanover, Germany, 171 p.Google Scholar
Sowerby, J. 1814. The Mineral Conchology of Great Britain, 1. Meredith, London, 234 p.Google Scholar
Stewart, J. D. 1990. Preliminary account of Halecostome-Inoceramid commensalism in the Upper Cretaceous of Kansas, p. 5157. In Boucot, A. (ed.), Evolutionary Paleobiology of Behaviour and Coevolution. Elsevier, Amsterdam.Google Scholar
Wegner, T. R. 1905. Die Granulatenkreide des Westlichen Munsterlandes. Zeitschrift deutschengen Gesdtschlaft Im Aufshtz, 112232.Google Scholar
Wignall, P. B., and Myers, K. J. 1988. Interpreting benthic oxygen levels in mudrocks; a new approach. Geology, 16:452455.2.3.CO;2>CrossRefGoogle Scholar