Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-02T09:44:30.539Z Has data issue: false hasContentIssue false

Planktic foraminiferal biostratigraphy and 87Sr/86Sr isotopic stratigraphy of the Oligocene-to-Pleistocene sedimentary sequence in the southeastern Calabrian microplate, southern Italy

Published online by Cambridge University Press:  14 July 2015

R. Timothy Patterson
Affiliation:
Department of Earth Sciences, Carleton University, Ottawa, Canada K1S 5B6
John Blenkinsop
Affiliation:
Department of Earth Sciences, Carleton University, Ottawa, Canada K1S 5B6
William Cavazza
Affiliation:
Department of Mineralogical Sciences, University of Bologna, 40126 Bologna, Italy

Abstract

Integration of foraminiferal biostratigraphy, 87Sr/86Sr isotope stratigraphy, and traditional physical stratigraphy has provided a refined age control of a poorly known Oligocene-to-Pleistocene sedimentary sequence nonconformably covering the crystalline basement complex of the Calabrian microplate, a continental block which rifted off the southern margin of the European plate during Neogene time. In spite of the fossil-poor content of the sequence, the simultaneous use of paleontological and geochemical techniques have resulted in the following conclusions. 1) The age of an unnamed, thin calcarenite unit locally present at the base of the sequence, previously considered Rupelian to early Aquitanian in age, has been refined to Chattian (27.8–24.8 Ma). This calcarenite was considered a basal, conformable member of the overlying Stilo-Capo d'Orlando Formation. However, this study indicates that it is separated from the Stilo-Capo d'Orlando Formation either by an angular unconformity or by a disconformity representing a significant time interval. 2) The Stilo-Capo d'Orlando Formation has a latest Chattian–earliest Aquitanian to Burdigalian age. Previously published reports suggested deposition over a much longer time span, ranging from late Rupelian to Langhian. 3) An unnamed deep-marine siliciclastic unit mostly composed of conglomerate and sandstone and previously considered Tortonian in age is, in fact, Serravallian to Tortonian. 4) The depositional interval of the “trubi,” fine-grained marine deposits, has been independently confirmed to span the Pliocene-Pleistocene.

The results of this study provide a framework for future sequence–stratigraphic and paleotectonic studies in the area, and prove the effectiveness of an integrated paleontological and geochemical (87Sr/86Sr) approach in the study of fossil-poor sedimentary sequences.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afchain, C. 1966. La base de la série tertiaire sur le bord oriental de la Calabre ulterieure. C. R. Somm. Société Géologique France, 10:397398.Google Scholar
Alvarez, W., Cocozza, T., and Wezel, F. C. 1974. Fragmentation of the Alpine orogenic belt by microplate dispersal. Nature, 248:309314.CrossRefGoogle Scholar
Amodio-Morelli, L., Bonardi, G., Colonna, V., Dietrich, D., Giunta, G., Ippolito, F., Liguori, V., Lorenzoni, S., Paglionico, A., Perrone, V., Piccarreta, G., Russo, M., Scandone, P., Zanettin-Lorenzoni, E., and Zuppetta, A. 1976. L'arco calabro–peloritano nell'orogene appenninico-magrebide. Memorie Societa' Geologica Italiana, 17:160.Google Scholar
Andersson, P. S., Wasserburg, G. J., and Ingri, J. 1993. The source and transport of Sr and Nd Isotopes in the Baltic Sea. Earth and Planetary Science Letters, 113:459472.CrossRefGoogle Scholar
Barrier, P., and Montenat, C. 1987. Essai de quantification des mouvements verticaux plio-pleistocenes dans le Detroit de Messine (Italie). Notes and Memoires, Total Compagnie Francaise des Petroles, 21:7379.Google Scholar
Blow, W. H. 1959. Age, correlation, and biostratigraphy of the upper Tocuyo (San Lorenzo) and Pozón Formations, eastern Falcón, Venezuela. Bulletins of American Paleontology, 39:67252.Google Scholar
Bolli, H. M. 1954. Note on Globigerina concinna REUSS, 1850. Contributions from the Cushman Foundation for Foraminiferal Research, 5:13.Google Scholar
Bolli, H. M. 1957. Planktonic foraminifera from the Miocene Cipero and Lengua Formations of Trinidad, B.W.I., p. 97123. In A. R. Loeblich, Jr., and collaborators, Studies of Foraminifera; Part 1—-Planktonic Foraminifera. U.S. National Museum, Bulletin 215.Google Scholar
Bolli, H. M., and Bermúdez, P. J. 1965. Zonation based on planktonic foraminifera of Middle Miocene to Pliocene warm-water sediments. Bolletin Informativo, Asociation Venezolana de Geologia, Mineria y Petroleo, 8:119149.Google Scholar
Bolli, H. M., and Saunders, J. B. 1985. Oligocene to Holocene low-latitude planktic foraminfera, p. 155262. In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., Plankton Stratigraphy, Volume 1, Planktic Foraminifera, Calcareous Nannofossils and Calpionellids. Cambridge Earth Science Series.Google Scholar
Bonardi, G., Giunta, G., Perrone, V., Russo, M., Zuppetta, A, and Ciampo, G. 1980. Osservazioni sull'evoluzione dell'arco calabro– peloritano nel Miocene inferiore: la Formazione di Stilo-Capo d'Orlando. Bollettino Società Geologica Italiana, 99:365393.Google Scholar
Bonardi, G., Pescatore, T., Scandone, P., and Torre, M. 1971. Problemi paleogeografici connessi con la successione mesozoico-terziaria di Stilo (Calabria meridionale). Bollettino Società Naturalisti Napoli, 80:114.Google Scholar
Brady, H. B. 1877. Supplementary note on the foraminifera of the chalk(?) of the New Britain group. Geological Magazine, New Series, Decade 2, 4:534536.CrossRefGoogle Scholar
Brady, H. B. 1879. Notes on some of the reticularian Rhizopoda of the “Challenger” Expedition; Part II, Additions to the knowledge of porcellanous and hyaline types. Quarterly Journal of Microscopical Science, London, New Series, 19:261299.Google Scholar
Cassa Per IL Mezzogiorno. 1968–1972. Geologic Map of Calabria, scale 1:25,000. Poligrafica & Cartevalori, Ercolano (Naples).Google Scholar
Cavazza, W. 1989. Detrital modes and provenance of the Stilo-Capo d'Orlando Formation (Miocene), southern Italy. Sedimentology, 37:10771090.CrossRefGoogle Scholar
Cavazza, W. 1992. Sandstone and conglomerate petrofacies reflect the late Cenozoic geodynamics of the Calabrian microplate, southern Italy. Abstract Book, 29th International Congress, Kyoto, Japan, 302 p.Google Scholar
Cavazza, W., and Dahl, J. 1990. Note on the temporal relationships between precipitation of authigenic minerals and sandstone compaction. Sedimentary Geology, 69:3744.CrossRefGoogle Scholar
Cavazza, W., and DeCelles, P. G. 1993. Geometry of a Miocene submarine canyon and associated sedimentary facies in southeastern Calabria, southern Italy. Geological Society of America Bulletin, 105:12971309.2.3.CO;2>CrossRefGoogle Scholar
Channell, J. E. T., Rio, D., and Thunell, R. C. 1988. Miocene-Pliocene boundary magnetostratigraphy at Capo Spartivento, Calabria, Italy. Geology, 16:10961099.2.3.CO;2>CrossRefGoogle Scholar
Chapman, F., Parr, W. J., and Collins, A. C. 1934. Tertiary foraminifera of Victoria, Australia. The Balcombian deposits of Port Philip; Part III. Linnean Society of London, Journal of Zoology, 38(1932–1934):533577.CrossRefGoogle Scholar
Cita, M. B. 1975. The Miocene-Pliocene boundary: history and definition, p. 130. In Saito, T. and Burckle, L. H. (eds.), Late Neogene Epoch Boundaries. Micropaleontology Special Publications, 1.Google Scholar
Courme, M. D., and Mascle, G. 1988. Nouvelles données stratigraphiques sur les séries Oligo-Miocènes des unités Siciliennes: conséquences paléogéographiques. Bulletin Societé Géologique France, 1:105118.CrossRefGoogle Scholar
Crescenti, U. 1966. Sulla biostratigrafia del Miocene affiorante al confine marchigiano-abruzzese. Geologica Romana, Rome, 5:154.Google Scholar
Cushman, J. A., and Bermúdez, P. J. 1937. Further new species of foraminifera from the Eocene of Cuba. Contributions from the Cushman Laboratory for Foraminiferal Research, 13:129.Google Scholar
Cushman, J. A., and Jarvis, P. W. 1936. Three new foraminifera from the Miocene Bowden marl of Jamaica. Contributions from the Cushman Laboratory for Foraminiferal Research, 12:35.Google Scholar
DePaolo, D. J. 1986. Detailed record of the Neogene Sr isotopic evolution of seawater from DSDP Site 590B. Geology, 14:103106.2.0.CO;2>CrossRefGoogle Scholar
DePaolo, D. J., and Ingram, B. L. 1985. High resolution stratigraphy with strontium isotopes. Science, 227:938941.CrossRefGoogle ScholarPubMed
Dercourt, J. et al. (17 authors). 1985. Présentation de 9 cartes paléogéographiques au 1/20.000.000 s'étendant de l'Atlantique au Pamir pour la période du Lias à l'Actuel. Bulletin Societé Géologique France, 5:637652.Google Scholar
Deshayes, G. P. 1832. Encyclopédie méthodique. Histoire naturelle des vers, Mme. v. Agasse, 2:1594.Google Scholar
DeVisser, J. P., Ebbing, J., Gudjonsson, L., Hilgen, F., Jorissen, F., Verhallen, P., and Zevenboom, D. 1989. The origin of the rhythmic bedding in the Pliocene Trubi Formation of Sicily, southern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 69:4566.CrossRefGoogle Scholar
Dewey, J. F., Helman, M. L., Turco, E., Hutton, D. H. W., and Knott, S. D. 1989. Kinematics of the western Mediterranean, p. 265283. In Coward, M. P., Dietrich, D., and Park, R. G., Alpine Tectonics. Geological Society, Special Publication 45.Google Scholar
Dewey, J. F., Pitman, W. C., Ryan, W. B F., and Bonnin, J. 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin, 84:31373180.2.0.CO;2>CrossRefGoogle Scholar
Edmond, J. M. 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in the marine limestones. Science, 258:15941597.CrossRefGoogle ScholarPubMed
Egger, J. G. 1893. Foraminiferen aus Meeresgrundproben, gelothet von 1874 bis 1876 von S. M. Sch. Gazelle. (K.) Bayerischen Akademie der Wissenschaften, Mathematisch-Physikalischen Klasse, Abhandlungen, Sitzungsberichte, München, 18:193458.Google Scholar
Ehrenberg, C. G. 1861. Elemente des tiefen Meeresgrundes im Mexikanischen Golfstrome bei Florida; Über die Tiefgrund-Verhältnisse des Oceans am Eingange der Davisstrasse und bei Island. (K.) Preuss. Akademie der Wissenschaften, Physikalisch-Mathematischen Klasse, Bericht, Monatsberichte, Berlin, 275315.Google Scholar
Faure, G. 1982. The marine-strontium geochronometer, p. 7379. In Odin, G. S., Numerical Dating in Stratigraphy, Volume 1. John Wiley and Sons, New York.Google Scholar
Faure, G. 1986. Principles of Isotope Geology. John Wiley and Sons, New York, 589 p.Google Scholar
Gorler, K. 1978. Neogene olistostromes in southern Italy as an indicator of contemporaneous plate tectonics, p. 355359. In Closs, H., Roeder, D., and Schmidt, K. (eds.), Alps, Apennines, Hellenides. Inter-Union Commission on Geodynamics, Scientific Report 38.Google Scholar
Gudjonsson, L., and Van der Zwaan, G. J. 1985. Anoxic events in the Pliocene Mediterranean: stable isotope evidence of run-off. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, B, 88:6982.Google Scholar
Hesse, J., Bender, M. L., and Schilling, J. G. 1986. Evolution of the ratio of strontium-87 to strontium-86 in sea water from Cretaceous to present. Science, 231:979984.CrossRefGoogle Scholar
Hilgen, F. J. 1987. Sedimentary rhythms and high-resolution chronostratigraphic correlations in the Mediterranean Pliocene. Stratigraphy Newsletter, 17:109127.CrossRefGoogle Scholar
Hodell, D. A., Mueller, P. A., and Garrido, J. R. 1991. Variations in the strontium isotopic composition of seawater during the Neogene. Geology, 19:2427.2.3.CO;2>CrossRefGoogle Scholar
Hurst, R. W. 1986. Strontium isotopic chronostratigraphy and correlation of the Miocene Monterey Formation in the Ventura and Santa Maria Basins of California. Geology, 14:459462.2.0.CO;2>CrossRefGoogle Scholar
Iaccarino, S. 1985. Mediterranean Miocene and Pliocene planktic foraminifera, p. 283314. In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K. (eds), Plankton Stratigraphy, Volume 1, Planktic Foraminifera, Calcareous Nannofossils and Calpionellids. Cambridge Earth Science Series.Google Scholar
Jenkins, D. G. 1960. Planktonic foraminifera from the Lakes Entrance oil shaft, Victoria, Australia. Micropaleontology, 6:345371.CrossRefGoogle Scholar
Kennett, J. P., and Srinivasan, M. S. 1983. Neogene Planktonic Foraminifera: A Phylogenetic Atlas. Hutchinson Ross Publishing Company, Stroudsburg, Pennsylvania, 265 p.Google Scholar
Koepnick, R. B., Denison, R. E., and Dahl, D. A. 1988. The Cenozoic 87Sr/86Sr curve: data review and implications for correlation of marine strata. Paleoceanography, 3:743756.CrossRefGoogle Scholar
Leroy, L. W. 1939. Some small foraminifera, ostracoda and otoliths from the Neogene (Miocene) of the Rokan-Tapanoeli area, central Sumatra. Natuurkundig Tijdschrift voor Nederlandsch–Indië, Batavia, 99:215296.Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1987. Foraminiferal genera and their classification. Van Nostrand, Reinhold Co., New York (2 vols.), 2,047 p.Google Scholar
Malinverno, A., and Ryan, W. B. F. 1986. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking in the lithosphere. Tectonics, 5:227245.CrossRefGoogle Scholar
McKenzie, J. A., Hodell, D. A., Mueller, P. A., and Mueller, D. W. 1986. Application of strontium isotopes to late Miocene-early Pliocene stratigraphy. Geology, 16:10221025.2.3.CO;2>CrossRefGoogle Scholar
Meulenkamp, J. E., Hilgen, F., and Voogt, E. 1986. Late Cenozoic sedimentary-tectonic history of the Calabrian Arc. Giornale di Geologia, 48:345359.Google Scholar
Miller, K. G., Feigenson, M. D., Kent, D. V., and Olsson, R. K. 1988. Upper Eocene to Oligocene isotope (87Sr/86Sr, δ18O, δ13C) standard section, Deep Sea Drilling Project 522. Paleoceanography, 3:223233.CrossRefGoogle Scholar
Miller, K. G., Feigenson, M. D., Wright, J. D., and Clement, B. M. 1991. Miocene isotopic reference section, Deep Sea Drilling Project Site 608: an evaluation of isotope and biostratigraphic resolution. Paleoceanography, 6:3352.CrossRefGoogle Scholar
Minzoni, N., Garavello, A., Luciani, V., Negri, A., and Ungaro, S. 1992. La Calabria ercinica negli orogeni alpino e appenninico-maghrebide. Bollettino Società Geologica Italiana, 111:131145.Google Scholar
Natland, M. L. 1938. New species of foraminifera off the west coast of North America and from the later Tertiary of the Los Angeles Basin. University of California, Scripps Institution of Oceanography Bulletin, 4:137164.Google Scholar
Orbigny, A. D. d'. 1826. Tableau méthodique de la classe des Céphalopodes. Annales des Sciences Naturelles, Paris, France, Séries 1, 7:96314.Google Scholar
Orbigny, A. D. d'. 1839a. Foraminiferes des îles Canaries, p. 119146. In Barker-Webb, P. and Berthelot, S. (eds.), Histoire Naturelle des îles Canaries. Béthune, 2 (Zoology).Google Scholar
Orbigny, A. D. d'. 1839b. Foraminifères, p. 1224. In de la Sagra, R. (ed.), Histoire physique, politique et naturelle de l'île de Cuba. A. Bertrand, Paris, 8.Google Scholar
Orbigny, A. D. d'. 1846. Foraminifères fossiles du bassin Tertiare de Vienne (Autriche) (Die fossilen Foraminiferen des Tertiaren Beckens von Wien). Gide et Comp., Paris, France, 303 p.Google Scholar
Raymo, M. E., and Ruddiman, W. F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359:117122.CrossRefGoogle Scholar
Raymo, M. E., and Froelich, P. N. 1988. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 16:649653.2.3.CO;2>CrossRefGoogle Scholar
Reuss, A. E. 1850. Neues Foraminiferen aus den Schichten des Osterreichischen Tertiärbeckens. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftlichen Klasse, Wien, 1:365390.Google Scholar
Rio, D., Sprovieri, R., and Thunell, R. 1991. Pliocene-lower Pleistocene chronostratigraphy: a re-evaluation of Mediterranean type sections. Geological Society of America Bulletin, 103:10491058.2.3.CO;2>CrossRefGoogle Scholar
Roda, C. 1965. Il calcare portlandiano a Dasycladacee di M. Mutolo, Reggio Calabria. Geologica Romana, 4:259290.Google Scholar
Rundberg, Y., and Smalley, P. C. 1989. High-resolution dating of Cenozoic sediments from northern North Sea using 87Sr/86Sr stratigraphy. American Association of Petroleum Geologists Bulletin, 73:298308 (see also discussion and reply, 74:1283–1290).Google Scholar
Schwager, C. 1866. Fossile Foraminiferen von Kar Nikobar, p. 187268. In Reise der Österreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859, unter den Befehlen des Commodore B. von Wullerstorf-Urbair. Geologischer Theil, 2 (no. 1, Geologische Beobachtungen, no. 2, Paläontologische Mittheilungen.Google Scholar
Stow, D. A. V., Howell, D. G., and Nelson, C. H. 1985. Sedimentary, tectonic and sea-level controls, p. 1522. In Bouma, A. H., Normark, W. R., and Barnes, N. E. (eds.), Submarine Fans and Related Turbidite Systems. Springer Verlag, New York.CrossRefGoogle Scholar
Thunell, R., Rio, D., Sprovieri, R., and Raffi, I. 1992. Limestonemarl couplets: origin of the early Pliocene Trubi marls in Calabria, southern Italy. Journal of Sedimentary Petrology, 61:11091122.Google Scholar
Tizard, Staff Commander, and Murray, J. 1882. Exploration of the Faröe Channel during the summer of 1880, in Her Majesty's hired Ship “Knight Errant.” Royal Society of Edinburgh, Proceedings, Edinburgh, 11(1880–1882):638720.Google Scholar
Veizer, J., 1989. Strontium isotopes in sea water through time. Annual Review of Earth and Planetary Sciences, 17:141168.CrossRefGoogle Scholar
Weltje, G. 1992. Oligocene to Early Miocene sedimentation and tectonics in the southern part of the Calabrian-Peloritan Arc (Aspromonte, southern Italy): a record of mixed-mode piggy-back basin evolution. Basin Research, 4:3768.CrossRefGoogle Scholar
Wezel, F. C. 1966. Nuova specie dell'Oligomiocene italiano. Rivista Italiana di Paleontologia, 87:12981306.Google Scholar
Zuderveld, J. D. A., Hilgen, F. J., Langereis, C. G., Verhallen, P. J. J. M., and Zachariasse, J. W. 1991. Integrated magnetostratigraphy and biostratigraphy of the upper Pliocene-lower Pleistocene from the Monte Singa and Crotone areas in Calabria, Italy. Earth and Planetary Science Letters 107:697714.CrossRefGoogle Scholar
Zuderveld, J. D. A., Zachariasse, J. W., Verhallen, P. J. J. M., and Hilgen, F. J. 1986. The age of the Miocene-Pliocene boundary. Stratigraphy Newsletter, 16:169181.CrossRefGoogle Scholar