Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-02T15:46:28.744Z Has data issue: false hasContentIssue false

A possible Cambrian stem-group gnathiferan-chaetognath from the Weeks Formation (Miaolingian) of Utah

Published online by Cambridge University Press:  03 March 2020

Simon Conway Morris
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, CB2 3EQ, UK
Ru D.A. Smith
Affiliation:
Menara Shell, 211 Jalan Tun Sambanthan, Kuala Lumpur, 50470, Malaysia
Jennifer F. Hoyal Cuthill
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, CB2 3EQ, UK Institute of Analytics and Data Science and School of Life Sciences, University of Essex, Wivenhoe Park, ColchesterCO4 3SQ, UK
Enrico Bonino
Affiliation:
Back to the Past Museum, Carretera Cancún, Puerto Morelos, Quintana Roo77580, Mexico
Rudy Lerosey-Aubril
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts02138, USA

Abstract

In recent years the plethora of ‘weird wonders,’ the vernacular for the apparently extinct major body plans documented in many of the Cambrian Lagerstätten, has been dramatically trimmed. This is because various taxa have been either assigned to known phyla or accommodated in larger monophyletic assemblages. Nevertheless, a number of Cambrian taxa retain their enigmatic status. To this intriguing roster we add Dakorhachis thambus n. gen. n. sp. from the Miaolingian (Guzhangian) Weeks Formation Konservat-Lagerstätte of Utah. Specimens consist of an elongate body that lacks appendages but is apparently segmented. A prominent feeding apparatus consists of a circlet of triangular teeth, while posteriorly there are three distinct skeletal components. D. thambus is interpreted as an ambush predator and may have been partially infaunal. The wider affinities of this new taxon remain conjectural, but it is suggested that it may represent a stem-group member of the Gnathifera, today represented by the gnathostomulids, micrognathozoans, and rotifers and possibly with links to the chaetognaths.

UUID: http://zoobank.org/22113e6b-f79e-4d06-9483-144618a61327

Type
Articles
Copyright
Copyright © 2020, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balavoine, G., and Adoutte, A., 2003, The segmented Urbilateria: A testable scenario: Integrative and Comparative Biology, v. 43, p. 137147.CrossRefGoogle ScholarPubMed
Bekkouche, N., and Worsaae, K., 2016, Nervous system and ciliary structures of Micrognathozoa (Gnathifera): Evolutionary insight from an early branch in Spiralia: Royal Society Open Science, v. 3, e160289.CrossRefGoogle ScholarPubMed
Bekkouche, N., Kristensen, R.M., Hejnol, A., Sørensen, M.V., and Worsaae, K., 2014, Detailed reconstruction of the musculature in Limnognathia maerski (Micrognathozoa) and comparison with other Gnathifera: Frontiers in Zoology, v. 11, e71.CrossRefGoogle ScholarPubMed
Bernt, M., et al. , 2013, A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny: Molecular Phylogenetics and Evolution, v. 69, p. 352364.Google ScholarPubMed
Blair, S.S., 2008, Segmentation in animals: Current Biology, v. 18, p. R991R995.CrossRefGoogle ScholarPubMed
Bone, Q., Ryan, K.P., and Pulsford, A.L., 1983, The structure and composition of teeth and grasping spines of chaetognaths: Journal of the Marine Biological Association of the United Kingdom, v. 63, p. 929939.CrossRefGoogle Scholar
Bone, Q., Kapp, H., and Pierrot-Bults, A.C., eds., 1991, The Biology of Chaetognaths: Oxford, Oxford University Press, 173 p.Google Scholar
Botting, J.P., 2012, Reassessment of the problematic Burgess Shale sponge Takakkawia lineata Walcott, 1920: Canadian Journal of Earth Sciences, v. 49, 10871095.CrossRefGoogle Scholar
Botting, J.P., and Muir, L.A., 2018, Early sponge evolution: A review and phylogenetic framework: Palaeoworld, v. 27, p. 129.CrossRefGoogle Scholar
Briggs, D.E.G., and Caron, J.-B., 2017, A large Cambrian chaetognath with supernumerary grasping spines: Current Biology, v. 27, p. 25362543.CrossRefGoogle ScholarPubMed
Briggs, D.E.G., Erwin, D.H., and Collier, F.J., 1994, The Fossils of the Burgess Shale: Washington D.C., Smithsonian Institution Press, 238 p.Google Scholar
Caron, J.-B., and Cheung, B., 2019, Amiskwia is a large Cambrian gnathiferan with complex gnathostomulid-like jaws: Communications Biology, v. 2, e164.CrossRefGoogle ScholarPubMed
Casanova, J.-P., and Duvert, M., 1996, Biodiversity and evolutionary trends in the phylum Chaetognatha: Bulletin de Société zoologique de France, v. 121, p. 7780.Google Scholar
Casanova, J.-P., and Duvert, M., 2002, Comparative studies and evolution of muscles in chaetognaths: Marine Biology, v. 141, p. 925938.CrossRefGoogle Scholar
Casenove, D., Oji, T., Goto, T., 2011, Experimental taphonomy of benthic chaetognaths: Implications for the decay process of Paleozoic chaetognath fossils: Paleontological Research, v. 15, p. 146153.CrossRefGoogle Scholar
Chen, J.-Y., and Huang, D.-Y., 2002, A possible lower Cambrian chaetognath (arrow worm): Science, v. 298, p. 187.CrossRefGoogle Scholar
Conway Morris, S., 1977, A redescription of the middle Cambrian worm Amiskwia sagittiformis Walcott from the Burgess Shale of British Columbia: Paläontologische Zeitschrift, v. 51, p. 271287.CrossRefGoogle Scholar
Conway Morris, S., 1986, The community structure of the middle Cambrian phyllopod bed (Burgess Shale) fauna, British Columbia: Palaeontology, v. 29, p. 423467.Google Scholar
De Smet, W.H., 2002, A new record of Limnognathia maerski Kristensen & Funch, 2000 (Micrognathozoa) from the sub-Antarctic Crozet Islands, with redescription of the trophi: Journal of Zoology, v. 258, p. 381393.CrossRefGoogle Scholar
Dong, X.-P., 2007, Study on the histology and comparative histology of some protoconodonts, paraconodonts and earliest euconodonts: Acta Micropaleontologica Sinica, v. 24, p. 113124 [in Chinese with English abstract].Google Scholar
Dunn, C.W., et al. , 2008, Broad phylogenomic sampling improves resolution of the animal tree of life: Nature, v. 452, p. 745749.CrossRefGoogle ScholarPubMed
Fröbius, A.C., and Funch, P., 2017, Rotiferan Hox genes give new insights into the evolution of metazoan bodyplans: Nature Communications, v. 8, e20.CrossRefGoogle ScholarPubMed
García-Bellido, D.C., Lee, M.S.Y., Edgecombe, G.D., Jago, J.B., Gehling, J.G., and Paterson, J.R., 2014, A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group: BMC Evolutionary Biology, v. 14, e214.CrossRefGoogle ScholarPubMed
Hagadorn, J.W., 2002, Burgess Shale–type localities: The global picture, in Bottjer, D.J., Etter, W., Hagadorn, J.W., and Tang, C.M, eds., Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life: New York, Columbia University Press, p. 91116.Google Scholar
Herlyn, H., and Ehlers, U., 1997, Ultrastructure and function of the pharynx of Gnathostomula paradoxa (Gnathostomulida): Zoomorphology, v. 117, p. 135145.CrossRefGoogle Scholar
Hesselbo, S.P., 1989, The aglaspidid arthropod Beckwithia from the Cambrian of Utah and Wisconsin: Journal of Paleontology, v. 63, p. 636642.CrossRefGoogle Scholar
Hou, X.-G., Aldridge, R.J., Bergstrom, J., Siveter, D.J., Siveter, D.J., and Feng, X.-H., 2004, The Cambrian Fossils of Chengjiang China: The Flowering of Early Animal Life: Oxford, Blackwell, 248 p.Google Scholar
Hu, S.-X., Steiner, M., Zhu, M., Erdtmann, B.-D., Luo, H., Chen, L., and Weber, B., 2007, Diverse pelagic predators from the Chengjiang Lagerstätte and the establishment of modern-style pelagic ecosystems in the early Cambrian: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 254, p. 307316.CrossRefGoogle Scholar
Jha, N., Kumar, P., Aggarwal, N., Bhattacharyya, D.D., and Pande, A.C., 2011, The oldest bdelloid Rotifera from early Permian sediments of Chamba Valley: A new discovery: International Journal of Geology, Earth and Environmental Sciences, v. 1, p. 2329.Google Scholar
Kouchinsky, A., Bengtson, S., Clausen, S., and Vendrasco, M.J., 2015, An early Cambrian fauna of skeletal fossils from the Emyaskin Formation, northern Siberia: Acta Palaeontologica Polonica, v. 60, p. 421512.Google Scholar
Kristensen, R.M., and Funch, P., 2000, Micrognathozoa: A new class with complicated jaws like those of Rotifera and Gnathostomulida: Journal of Morphology, v. 246, p. 149.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Kröger, B., Vinther, J., and Fuchs, D., 2011, Cephalopod origin and evolution: A congruent picture emerging from fossils, development and molecules: Extant cephalopods are younger than previously realised and were under major selection to become agile, shell-less predators: BioEssays, v. 33, p. 602613.CrossRefGoogle ScholarPubMed
Laumer, C.E., et al. , 2015, Spiralian phylogeny informs the evolution of microscopic lineages: Current Biology, v. 25, p. 20002006.CrossRefGoogle ScholarPubMed
Lerosey-Aubril, R., 2015, Notchia weugi gen. et sp. nov: A new short-headed arthropod from the Weeks Formation Konservat-Lagerstätte (Cambrian; Utah): Geological Magazine, v. 152, p. 351357.CrossRefGoogle Scholar
Lerosey-Aubril, R., Hegna, T.A., Kier, C., Bonino, E., Habersetzer, J., and Carré, M., 2012, Controls on gut phosphatisation: The trilobites from the Weeks Formation Lagerstätte (Cambrian, Utah): PLoS ONE, v. 7, e32934.CrossRefGoogle Scholar
Lerosey-Aubril, R., Ortega-Hernández, J., Kier, C., and Bonino, E., 2013, Occurrence of the Ordovician-type aglaspidid Tremaglaspis in the Cambrian Weeks Formation (Utah, USA): Geological Magazine, v. 150, p. 945951.CrossRefGoogle Scholar
Lerosey-Aubril, R., Hegna, T., Babcock, L.E., Bonino, E., and Kier, C., 2014, Arthropod appendages from the Weeks Formation Konservat-Lagerstätte: New occurrences of anomalocaridids in the Cambrian of Utah, USA: Bulletin of Geosciences, v. 89, p. 262282.Google Scholar
Lerosey-Aubril, R., Gaines, R.R., Hegna, T.A., Ortega-Hernández, J., Van Roy, P., Kier, C., and Bonino, E., 2018, The Weeks Formation Konservat-Lagerstätte and the evolutionary transition of Cambrian marine life: Journal of the Geological Society (London), v. 175, p. 705715.CrossRefGoogle Scholar
Marlétaz, F., and Le Parco, Y., 2008, Careful with understudied phyla: The case of chaetognath: BMC Evolutionary Biology, v. 8, e251.CrossRefGoogle ScholarPubMed
Marlétaz, F., Martin, E., Perez, Y., Papillon, D. and Caubit, X., 2006, Chaetognath phylogenomics: A protostome with deuterostome-like development: Current Biology, v. 16, p. R577R578.CrossRefGoogle ScholarPubMed
Marlétaz, F., Peijnenburg, K.T.C.A., Goto, T., Satoh, N., and Rokhsar, D.S., 2019, A new spiralian phylogeny places the enigmatic arrow worms among gnathiferans: Current Biology, v. 29, p. 312318.e3.CrossRefGoogle ScholarPubMed
Matus, D.Q., Halanych, K.M., and Martindale, M.Q., 2007, The Hox gene complement of a pelagic chaetognath Flaccisagitta enflata: Integrative and Comparative Biology, v. 47, p. 854864.CrossRefGoogle ScholarPubMed
Moreno, I., and Kapp, H., 2003, Structures of grasping spines and teeth in three species of chaetognaths from Antarctic waters: Polar Biology, v. 26, p. 143150.CrossRefGoogle Scholar
Muscente, A.D., et al. , 2017, Exceptionally preserved fossil assemblages through geologic time and space: Gondwana Research, v. 48, p. 164188.CrossRefGoogle Scholar
Ortega-Hernández, J., Lerosey-Aubril, R., Kier, C., and Bonino, E., 2015, A rare non-trilobite artiopodan from the Guzhangian (Cambrian Series 3) Weeks Formation Konservat-Lagerstätte in Utah, USA: Palaeontology, v. 58, p. 265276.CrossRefGoogle Scholar
Ou, Q., Conway Morris, S., Han, J., Zhang, Z., Liu, J., Chen, A., Zhang, X., and Shu, D., 2012, Evidence for gill slits and a pharynx in Cambrian vetulicolians: Implications for the early evolution of deuterostomes: BMC Biology, v. 10, e81.CrossRefGoogle Scholar
Ou, Q., Xiao, S., Han, J., Sun, G., Zhang, F., Zhang, Z., and Shu, D., 2015, A vanished history of skeletonization in Cambrian comb jellies: Science Advances, v. 1, e1500092.CrossRefGoogle ScholarPubMed
Papillon, D., Perez, Y., Caubit, X., and Le Parco, Y., 2006, Systematics of Chaetognatha under the light of molecular data, using duplicated ribosomal 18S DNA sequences: Molecular Phylogenetics and Evolution, v. 38, p. 621634.CrossRefGoogle ScholarPubMed
Perez, Y., Rieger, V., Martin, E., Müller, C.H.G., and Harzsch, S., 2013, Neurogenesis in an early protostome relative: Progenitor cells in the ventral nerve center of chaetognath hatchlings are arranged in a highly organized geometrical pattern: Journal of Experimental Zoology B: Molecular and Developmental Evolution, v. 320, p. 179193.CrossRefGoogle Scholar
Poinar, G.O., and Ricci, C., 1992, Bdelloid rotifers in Dominican amber: Evidence for parthenogenetic continuity: Experientia, v. 48, p. 408410.CrossRefGoogle Scholar
Pyle, L.J., Narbonne, G.M., Nowlan, G.S., Xiao, S-H., and James, N.P., 2006, Early Cambrian metazoan eggs, embryos, and phosphatic microfossils from northwestern Canada: Journal of Paleontology, v. 80, p. 811825.CrossRefGoogle Scholar
Qian, Y., 1977, Hyolitha and some problematica from the lower Cambrian Meishucunian Stage in central and southwestern China: Acta Palaeontologica Sinica, v. 16, p. 252275.Google Scholar
Reich, M., and Smith, A.B., 2009, Origins and biomechanical evolution of teeth in echinoids and their relatives: Palaeontology, v. 52, p. 11491168.CrossRefGoogle Scholar
Reich, M., Stegemann, T.R., Hausmann, I.M., Roden, V.J., and Nützel, A., 2018, The youngest ophiocistioid: A first Palaeozoic-type echinoderm group representative from the Mesozoic: Palaeontology, v. 61, p. 803811.CrossRefGoogle Scholar
Riedl, R., and Rieger, R.M., 1972, New characters observed on isolated jaws and basal plates of the family Gnathostomulidae (Gnathostomulida): Zeitschrift für Morphologie der Tiere, v. 72, p. 131172.CrossRefGoogle Scholar
Rieger, R.M., and Tyler, S., 1995, Sister-group relationship of Gnathostomulida and Rotifera-Acanthocephala: Invertebrate Biology, v. 14, p. 186188.CrossRefGoogle Scholar
Riemann, O., and Ahlrichs, W.H., 2008, Ultrastructure and function of the mastax in Dicranophorus forcipatus (Rotifera: Monogononta): Journal of Morphology, v. 269, p. 698712.CrossRefGoogle Scholar
Robison, R.A., Babcock, L.E., and Gunther, V.G., 2015, Exceptional Cambrian fossils from Utah: A window into the age of trilobites: Utah Geological Survey, Miscellaneous Publications, v. 15–1, 97 p.Google Scholar
Shen, X., Sun, S., Zhao, F.Q., Zhang, G.T., Tian, M., Tsang, L.M., Wang, J.F., and Chu, K.H., 2016, Phylomitogenomic analyses strongly suggest the sister relationship of the Chaetognatha and Protostomia: Zoologica Scripta, v. 45, p. 187199.CrossRefGoogle Scholar
Shu, D.-G., Conway Morris, S., Han, J., Cuthill, J.F.H., Zhang, Z., Cheng, M., and Huang, H., 2017, Multi-jawed chaetognaths from the Chengjiang Lagerstätte (Cambrian, Series 2, Stage 3) of Yunnan, China: Palaeontology, v. 60, p. 763772.CrossRefGoogle Scholar
Smith, M.R., 2013, Nectocaridid ecology, diversity and affinity: Early origin of a cephalopod-like body plan: Paleobiology, v. 39, p. 297321.CrossRefGoogle Scholar
Smith, M.R., and Caron, J.-B., 2010, Primitive soft-bodied cephalopods from the Cambrian: Nature, v. 465, p. 469472.CrossRefGoogle ScholarPubMed
Smith, M.R., Harvey, T.H.P., and Butterfield, N.J., 2015, The macro- and microfossil record of the Cambrian priapulid Ottoia: Palaeontology, v. 58, p. 705721.CrossRefGoogle Scholar
Sørensen, M.V., 2002a, On the evolution and morphology of the rotiferan trophi, with a cladistic analysis of Rotifera: Journal of Zoological Systematics and Evolutionary Research, v. 40, p. 129154.CrossRefGoogle Scholar
Sørensen, M.V., 2002b, Phylogeny and jaw evolution in Gnathostomulida, with a cladistic analysis of the genera: Zoologica Scripta, v. 31, p. 461480.CrossRefGoogle Scholar
Sørensen, M.V., 2003, Further structures in the jaw apparatus of Limnognathia maerski (Micrognathozoa), with notes on the phylogeny of the Gnathifera: Journal of Morphology, v. 255, p. 131145.CrossRefGoogle Scholar
Sørensen, M.V., and Sterrer, W. 2002, New characters in the gnathostomulid mouth parts revealed by scanning electron microscopy: Journal of Morphology, v. 253, p. 310334.CrossRefGoogle ScholarPubMed
Sørensen, M.V., Sterrer, W., and Giribet, G., 2006, Gnathostomulid phylogeny inferred from a combined approach of four molecular loci and morphology: Cladistics, v. 22, p. 3258.CrossRefGoogle Scholar
Sterrer, W., 1972, Systematics and evolution within the Gnathostomulida: Systematic Zoology, v. 21, p. 151173.CrossRefGoogle Scholar
Stock, S.R., Ignatiev, K., Lee, P., and Almer, J.D., 2014, Calcite orientations and composition ranges within teeth across Echinoidea: Connective Tissue Research, v. 55, supp. 1, p. 4852.CrossRefGoogle ScholarPubMed
Szaniawski, H., 1982, Chaetognath grasping spines recognized among Cambrian protoconodonts: Journal of Paleontology, v. 56, p. 806.Google Scholar
Szaniawski, H., 2002, New evidence for the protoconodont origin of chaetognaths: Acta Palaeontologica Polonica, v. 47, p. 405.Google Scholar
Szaniawski, H., 2015, New group of the early Palaeozoic conodont-like fossils: Estonian Journal of Earth Sciences, v. 64, p. 9194.CrossRefGoogle Scholar
Vannier, J., Steiner, M., Renvoisé, E., Hu, S.-X., and Casanova, J.-P., 2007, Early Cambrian origin of modern food webs: Evidence from predator arrow worms: Proceedings of the Royal Society of London B, v. 274, p. 627633.Google ScholarPubMed
Vinther, J., and Parry, L.A., 2019, Bilateral jaw elements in Amiskwia sagittiformis bridge the morphological gap between gnathiferans and chaetognaths: Current Biology, v. 29, p. 881888.CrossRefGoogle ScholarPubMed
Waggoner, B.M., and Poinar, G.O., 1993, Fossil habrotrochid rotifers in Dominican amber: Experientia, v. 49, p. 354357.CrossRefGoogle Scholar
Walcott, C.D., 1911, Middle Cambrian annelids: Smithsonian Miscellaneous Collections, v. 57, p. 109144.Google Scholar
Walcott, C.D., 1920, Middle Cambrian Spongiae: Smithsonian Miscellaneous Collections, v. 67, p. 261364.Google Scholar
Wang, R., Addadi, L., and Weiner, S., 1997, Design strategies of sea urchin teeth: Structure, composition and micromechanical relations to function: Philosophical Transactions of the Royal Society of London B, v. 352, p. 469480.CrossRefGoogle Scholar
Wulfken, D., and Ahlrichs, W.H., 2012, The ultrastructure of the mastax of Filinia longiseta (Flosculariaceae, Rotifera): Informational value of the trophi structure and mastax musculature: Zoologischer Anzeiger, v. 251, p. 270278.Google Scholar