Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T04:10:26.731Z Has data issue: false hasContentIssue false

Rise of clathrodictyid stromatoporoids during the Great Ordovician Biodiversification Event: insights from the Upper Ordovician Xiazhen Formation of South China

Published online by Cambridge University Press:  23 June 2022

Juwan Jeon
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
Kun Liang*
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
Stephen Kershaw
Affiliation:
Department of Life Sciences, Brunel University, Kingston Lane, Uxbridge, UB8 3PH, UK Earth Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
Jino Park
Affiliation:
Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
Mirinae Lee
Affiliation:
Division of Polar Earth-System Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
Yuandong Zhang
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
*
*Corresponding author.

Abstract

Clathrodictyids are the most abundant stromatoporoids in the Upper Ordovician Xiazhen Formation (middle to upper Katian) of South China. A total of nine species belonging to four clathrodictyid genera are identified in the formation, including Clathrodictyon idense Webby and Banks, 1976, Clathrodictyon cf. Cl. microundulatum Nestor, 1964, Clathrodictyon cf. Cl. mammillatum (Schmidt, 1858), Clathrodictyon megalamellatum Jeon n. sp., Clathrodictyon plicatum Webby and Banks, 1976, Ecclimadictyon nestori Webby, 1969, Ecclimadictyon undatum Webby and Banks, 1976, Camptodictyon amzassensis (Khalfina, 1960), and Labyrinthodictyon cascum (Webby and Morris, 1976). The clathrodictyid fauna in the Xiazhen Formation is very similar to those from both New South Wales and Tasmania, although the latter two Australian regions do not share any common clathrodictyid species during the Late Ordovician. The paleobiogeographic pattern indicates that the northward drift of South China resulted in a favorable environment for the migration of clathrodictyids from other peri-Gondwanan terranes to South China. In addition, these peri-Gondwanan clathrodictyid species hosted various endobionts, representing a variety of paleoecological interactions. The high abundance and species-level diversity of clathrodictyid species presumably increased the substrate availability of suitable host taxa, judging from the diverse intergrowth associations between clathrodictyids and other benthic organisms. These paleoecological interactions between stromatoporoid and other organisms are known from the Late Ordovician and became more abundant and widespread in the Siluro–Devonian. Overall, the Late Ordovician clathrodictyid assemblage in South China demonstrates one of the highest species-level diversities among all peri-Gondwanan terranes and represents a precursor of the complex, clathrodictyid-dominated communities of later metazoan reefs during the Great Ordovician Biodiversification Event.

UUID: http://zoobank.org/6063c47d-cb77-4a03-98cf-b2354656dea6

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article has been updated since its original publication to add a missing figure number. See https://doi.org/10.1017/jpa.2022.69.

References

Bastian, M., Heymann, S., and Jacomy, M., 2009, Gephi: an open source software for exploring and manipulating networks: Proceedings of the International Conference on Web and Social Media, v. 8, p. 361362.CrossRefGoogle Scholar
Bian, L.Z., and Zhou, X.P., 1990, Calcareous algae from the Sanqushan Formation (Upper Ordovician) at the border area between Zhejiang Province and Jiangxi Province: Journal of Nanjing University (Natural Sciences Edition), v. 3, p. 123. [in Chinese with English abstract]Google Scholar
Bian, L.Z., Fang, Y.T., and Huang, Z.C., 1996, On the types of Late Ordovician reefs and their characteristics in the neighboring regions of Zhejiang and Jiangxi provinces, South China, in Fan, J. S., ed., The Ancient Organic Reefs of China and their Relation to Oil and Gas: Beijing, Ocean Publication House, p. 5475.Google Scholar
Bogoyavlenskaya, O.V., 1969, K postroeniiu klassifikatsii stromatoporoidei [On constructing the classification of the stromatoporoids]: Paleontologicheskiy Zhurnal, v. 1969, p. 1227.Google Scholar
Bogoyavlenskaya, O.V., 1973, Ordovikskie stromatoporoidei zapadnogo sklona Urala [Ordovician stromatoporoids of the western slope of the Urals]: Paleontologicheskiy Zhurnal, v. 1973, p. 1824.Google Scholar
Bol'shakova, L.N., and Ulitina, L.M., 1985, Stromatoporaty i biostratigrafiia nizhnego paleozoia Mongolii [Stromatoporates and Biostratigraphy of Lower Paleozoic of Mongolia]: Moscow, Sovmestnaia sovetsko-mongol'skaia paleontologicheskaia ekspeditsiia, Trudy 27, 87 p.Google Scholar
Bolton, T., 1988, Stromatoporoidea from the Ordovician rocks of central and eastern Canada: Geological Survey of Canada Bulletin, v. 379, p. 1745.Google Scholar
Burrett, C., Banks, M., Clota, G., and Seymour, D., 1989, Lithostratigraphy of the Ordovician Gordon Group, Mole Creek, Tasmania: Records of the Queen Victoria Museum, no. 96, p. 114.Google Scholar
Carrera, M.C., and Rigby, J.K., 2004, Sponges, in Webby, B.D., Paris, F., Droser, M.L., and Percival, I.G., eds., The Great Ordovician Biodiversification Event: New York, Columbia University Press, p. 102111.CrossRefGoogle Scholar
Chen, X., Rong, J.Y., Qiu, J.Y., Han, N.R., Li, L.Z., and Li, S.J., 1987, Preliminary stratigraphy, sedimentologic and environmental investigation of Zhuzhai section: Journal of Stratigraphy, v. 11, p. 2334. [in Chinese with English abstract]Google Scholar
Chen, X.S., 1995, The Late Ordovician stromatoporoid–coral patch reef at Dashanjiao, Yushan, Jiangxi: Marine Origin Petroleum Geology, v. 2, p. 2030. [in Chinese with English abstract]Google Scholar
Chen, X.S., 1996, Patch reef of Late Ordovician stromatoporoids and corals in Yushan, Jiangxi: Oil and Gas Geology, v. 17, p. 326332. [in Chinese with English abstract]Google Scholar
Chen, Z.Y., Kim, M.H., Choh, S.-J., Lee, D.-J., and Chen, X., 2016, Discovery of Anticostia uniformis from the Xiazhen Formation at Zhuzhai, South China and its stratigraphic implication: Palaeoworld, v. 25, p. 356361.CrossRefGoogle Scholar
Cocks, L.R.M., and Torsvik, T.H., 2020, Ordovician palaeogeography and climate change: Gondwana Research, v. 100, p. 5372.CrossRefGoogle Scholar
Copper, P., 2002, Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages, in Kiessling, W., Flügel, E., and Golonka, J., eds., Phanerozoic reef patterns: Tulsa, SEPM Special Publication 72, p. 181238.CrossRefGoogle Scholar
Copper, P., 2011, 100 million years of reef prosperity and collapse: Ordovician to Devonian interval: The Paleontological Society Papers, v. 17, p. 1532CrossRefGoogle Scholar
Dai, M.J., Liu, L., Lee, D.-J., Peng, Y.B., and Miao, A.S., 2015, Morphometrics of Heliolites (Tabulata) from the Late Ordovician, Yushan, Jiangxi, South China: Acta Geologica Sinica (English Edition), v. 89, p. 3854.Google Scholar
Da Silva, A.-C., Kershaw, S., and Boulvain, F., 2011, Sedimentology and stromatoporoid palaeoecology of Frasnian (Upper Devonian) carbonate mounds in southern Belgium: Lethaia, v. 44, p. 255274.CrossRefGoogle Scholar
Dixon, O.A., 2010, Endobiotic cornulitids in Upper Ordovician tabulate corals and stromatoporoids from Anticosti Island, Quebec: Journal of Paleontology, v. 84, p. 518528.CrossRefGoogle Scholar
Dong, D.-Y., and Wang, B.-Y., 1984, Paleozoic stromatoporoids from Xinjiang and their stratigraphic significance: Bulletin of the Nanjing Institute of Geology and Palaeontology, Academia Sinica, v. 7, p. 237286. [in Chinese with English abstract]Google Scholar
Ernst, A., 2018, Diversity dynamics of Ordovician Bryozoa: Lethaia, v. 51, p. 198206.CrossRefGoogle Scholar
Grant, R.E., 1836, Animal Kingdom: The Cyclopaedia of Anatomy and Physiology, v. 1, p, 107118.Google Scholar
Harper, D.A.T., Cocks, L.R.M., Popov, L.E., Sheehan, P.M., Bassett, M.G., Copper, P., Holmer, L.E., Jin, J., and Rong, J., 2004, Brachiopods, in Webby, B.D., Paris, F., Droser, M.L., and Percival, I.G., eds., The Great Ordovician Biodiversification Event: New York, Columbia University Press, p. 157178.CrossRefGoogle Scholar
Huntley, J.W., and Kowalewski, M, 2007, Strong coupling of predation intensity and diversity in the Phanerozoic fossil record: Proceedings of the National Academy of Sciences of the United States of America, v. 104, p. 1500615010.CrossRefGoogle ScholarPubMed
Jeon, J., Liang, K., Park, J., Choh, S.-J., and Lee, D.-J., 2020a, Late Ordovician stromatoporoids from the Xiazhen Formation of South China: paleoecological and paleogeographical implications: Geological Journal, v. 55, p. 197209.CrossRefGoogle Scholar
Jeon, J., Liang, K., Lee, M., and Kershaw, S., 2020b, Earliest known spatial competition between stromatoporoids: evidence from the Upper Ordovician Xiazhen Formation of South China: Journal of Paleontology, v. 94, p. 110.CrossRefGoogle Scholar
Jeon, J., Li, Q.-J., Na, L., Liang, K., and Zhang, Y.D., 2022a, Skeletal variation in the early clathrodictyid stromatoporoids of Upper Ordovician and its paleoecological and phylogenetic implications: Palaeoworld, v. 31, p. 5868.CrossRefGoogle Scholar
Jeon, J., Liang, K., Park, J., Kershaw, S., and Zhang, Y.D., 2022b, Diverse labechiid stromatoporoids from the Upper Ordovician Xiazhen Formation of South China and their paleobiogeographic implications: Journal of Paleontology, v. 96, p. 513538.CrossRefGoogle Scholar
Jeon, J., Vinn, O., Liang, K., Zapalski, M.K., Toom, U., and Kershaw, S., (in press), Stromatoporoid–coral/tubeworm intergrowths in the lowermost Silurian Varbola Formation of Estonia: first evidence of competitive interaction: Lethaia.Google Scholar
Jiang, H.X., Sun, L.Y., Bao, H.P., and Wu, Y.S., 2011, Stromatoporoids from the Ordovician reefs in the southern edge of the Ordos Basin, North China: Acta Micropalaeontologica Sinica, v. 28, p. 301308. [in Chinese with English abstract]Google Scholar
Kershaw, S., 1987, Stromatoporoid–coral intergrowths in a Silurian biostrome: Lethaia, v. 20, p. 371382.CrossRefGoogle Scholar
Kershaw, S., 2013, Palaeozoic stromatoporoid futures: a discussion of their taxonomy, mineralogy and applications in palaeoecology and palaeoenvironmental analysis: Journal of Palaeogeography, v. 2, p. 163182.Google Scholar
Kershaw, S., Munnecke, A., and Jarochowska, E., 2018, Understanding Palaeozoic stromatoporoid growth: Earth-Science Reviews, v. 187, p. 5376.CrossRefGoogle Scholar
Khalfina, V.K., 1960, Otriad Stromatoporoidei: Ordovikskaia sistema [Order Stromatoporoidea: Ordovician System] in Khalfin, L.L., ed., Biostratigrafiia Paleozoia Saiano-Altaǐskoǐ Gornoǐ Oblasti, Tom I: Nizhniǐ Paleozoǐ [Paleozoic Biostratigraphy of the Sayan-Altai Mountain Region, vol. I: Lower Paleozoic]: Sibirskogo Nauchno-issedovatel'skogo Instituta Geologii, Geofiziki i Mineral'nogo Syr'ia, Trudy 19, p. 370–373.Google Scholar
Khalfina, V.K., and Yavorsky, V.I., 1973, Klassificatsiia Stromatoporoidea [Classification of the stromatoporids]: Paleontologicheskiy Zhurnal, v. 1973, no. 2, p. 1934.Google Scholar
Khromykh, V.G., 2001, Novye stromatoporoidei iz verkhnego ordovika Taimyra [New Upper Ordovician Stromatoporoidea from Taimyr]: Paleontologicheskiy Zhurnal, v. 35, no. 4, p. 1115.Google Scholar
Kühn, O., 1939, Eine neue Familie der Stromatoporen: Zentralblatt für Mineralogie, Geologie und Paläontologie, v. 1939, p. 338345.Google Scholar
Kwon, S.W., Park, J., Choh, S.-J., Lee, D.C., and Lee, D.-J., 2012, Tetradiid–siliceous sponge patch reefs from the Xiazhen Formation (late Katian), southeast China: a new Late Ordovician reef association: Sedimentary Geology, v. 267, p. 1524.CrossRefGoogle Scholar
Lee, D.-C., 2013, Late Ordovician trilobites from the Xiazhen Formation in Zhuzhai, Jiangxi Province, China: Acta Palaeontologica Polonica, v. 58, p. 855882.Google Scholar
Lee, D.-C., et al. , 2012, Revised stratigraphy of the Xiazhen Formation (Upper Ordovician) at Zhuzhai, South China, based on palaeontological and lithological data: Alcheringa, v. 36, p. 387404.CrossRefGoogle Scholar
Lee, M., Park, H., Tien, N.V., Choh, S.-J., Elias, R.J., and Lee, D.-J., 2016a, A new species of Amsassia from the Ordovician of Korea and South China: paleobiological and paleogeographical significance: Acta Geologica Sinica (English Edition), v. 90, p. 796806.CrossRefGoogle Scholar
Lee, M., Elias, R.J., Choh, S.-J., and Lee, D.-J., 2016b, Insight from early coral–stromatoporoid intergrowth, Late Ordovician of China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 463, p. 192204.CrossRefGoogle Scholar
Lee, M., Elias, R.J., Choh, S.-J., and Lee, D.-J. 2019, Palaeobiological features of the coralomorph Amsassia from the Late Ordovician of South China: Alcheringa, v. 43, p. 1832.CrossRefGoogle Scholar
Li, G.-C., and Lin, B.-Y., 1982, On some geological problems in the eastern part of Kunlun Mountain: Contribution on the Geology of the Qinghai-Xizang (Tibet) Plateau, v. 3, p. 2852.Google Scholar
Li, Y., Kershaw, S., and Mu, X.N., 2004, Ordovician reef systems and settings in South China before the Late Ordovician mass extinction: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 205, p. 235254.CrossRefGoogle Scholar
Liang, K., Elias, R.J., Choh, S.-J., Lee, D.-C., and Lee, D.-J., 2016, Morphometrics and paleoecology of Catenipora (Tabulata) from the Xiazhen Formation (Upper Ordovician), Zhuzhai, South China: Journal of Paleontology, v. 90, p. 10271048.CrossRefGoogle Scholar
Lin, B.-Y., and Webby, B.D., 1988, Clathrodictyid stromatoporoids from the Ordovician of China: Alcheringa, v. 12, p. 233247.Google Scholar
Lin, B.-Y., and Webby, B.D., 1989, Biogeographic relationships of Australian and Chinese corals and stromatoporoids: Memoir of the Association of Australasian Palaeontologists, v. 8, p. 207217.Google Scholar
Ma, J.Y., Taylor, P. D., and Buttler, C. J., 2021, Sclerobionts associated with Orbiramus from the Early Ordovician of Hubei, China, the oldest known trepostome bryozoan: Lethaia, v. 54, p. 443456.Google Scholar
Mistiaen, B., 1994, Skeletal density: implications for development and extinction of Palaeozoic stromatoporoids: Courier Forschungsinstitut Senckenberg, v. 172, p. 319327.Google Scholar
Mori, K., 1970, Stromatoporoids from the Silurian of Gotland, Part 2. Stockholm: Contributions in Geology, v. 22, 152 p.Google Scholar
Mu, E.Z., Li, J.J., Ge, M.Y., Chen, X., Lin, Y.K., and Ni, Y.N., 1993, Upper Ordovician graptolites of central China region: Palaeontologia Sinica, New Series B, v. 29, p. 1393. [in Chinese with English summary]Google Scholar
Nestor, H., 1964, Stromatoporoidei Ordovika i Llandoveri Estoniï [Ordovician and Llandoverian Stromatoporoidea of Estonia]: Tallinn, Akademiia Nauk Estonskoi SSR, Institut Geologii. 112 p.Google Scholar
Nestor, H., 1997, Evolutionary history of the single-layered, laminate, clathrodictyid stromatoporoids: Boletín Real Sociedad Española de Historia Natural, Sección Geológica, v. 91, p. 319328.Google Scholar
Nestor, H., 2015, Clathrodictyida: systematic descriptions, in Selden, P.A., ed., Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Volume 4–5: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. 755768.Google Scholar
Nestor, H., and Stock., C.W. 2001, Recovery of the stromatoporoid fauna after the Late Ordovician extinction, in Ezaki, Y., Mori, K., Sugiyama, T., and Sorauf, J.E., eds., Proceedings of the 8th International Symposium on Fossil Cnidaria and Porifera, September 12–16, 1999: Bulletin of the Tohoku Imperial University Museum, Sendai, Japan, p. 333–341.Google Scholar
Nestor, H., and Webby, B.D., 2013, Biogeography of the Ordovician and Silurian Stromatoporoidea, in Harper, D.A.T., and Servais, T., eds., Early Palaeozoic Biogeography and Palaeogeography: Geological Society of London Memoir 38, p. 67–79.CrossRefGoogle Scholar
Nestor, H., Copper, P., and Stock, C., 2010, Late Ordovician and Early Silurian Stromatoporoid Sponges from Anticosti Island, Eastern Canada: Crossing the O/S Mass Extinction Boundary: Ottawa, National Research Council Research Press, 152 p.Google Scholar
Nicholson, H.A., 1887, On some new or imperfectly known species of stromatoporoids, part 3: Annals and Magazine of Natural History, ser. 5, v. 19, no. 109, p. 117.CrossRefGoogle Scholar
Nicholson, H.A., and Murie, J., 1878, On the minute structure of Stromatopora and its allies: Zoological Journal of the Linnaean Society, v. 14, p. 187246.CrossRefGoogle Scholar
Park, J, 2017, Sedimentology and paleoecology of the Middle to Upper Ordovician sponge-bearing limestone and implication for early Paleozoic carbonate successions [Ph.D. dissertation]: Seoul, Korea University, 160 pp.Google Scholar
Park, J., Lee, J.-H., Liang, K., and Choh, S.-J., 2021, Facies analysis of the Upper Ordovician Xiazhen Formation, southeast China: implications for carbonate platform development in South China prior to the onset of the Hirnantian glaciation: Facies, v. 67, no. 18, p. 120.CrossRefGoogle Scholar
Percival, I.G., Zhen, Y.-Y., and Pickett, J., 2006, Late Ordovician faunas from the Quandialla–Marsden district, south-central New South Wales: Proceedings of the Linnean Society of New South Wales, v. 127, p. 235255.Google Scholar
Percival, I.G., Popov, L.E., Zhan, R.B., and Ghobadi Pour, M., 2011, Patterns of origination and dispersal of Middle to Late Ordovician brachiopods: examples from South China, East Gondwana, and Kazakh Terranes, in Gutiérrez-Marco, J.C., Rábano, I., and García-Bellido, D., eds., Ordovician of the World: Cuadernos del Museo Geominero, Instituto Geológico y Minero de España, Madrid, v. 14, p. 625661.Google Scholar
Pickett, J., and Percival, I.G., 2001, Ordovician faunas and biostratigraphy in the Gunningbland area, central New South Wales, Australia: Alcheringa, v. 25, p. 952.CrossRefGoogle Scholar
Plusquellec, Y., and Bigey, F.P., 2019, New data on the intergrowth of Rugosa-Bryozoa in the Lower Devonian of North Gondwana: Carnets de Geologie, v. 19, p. 421437.Google Scholar
Riabinin, V.N., 1951, Stromatoporoidei Ėstonskoi SSR (silur i verkhi ordovika) [Stromatoporoids of Estonian SSR (Silurian and uppermost Ordovicain)]: Trudy Vsesoiuznogo Neftianogo Instituta (VNIGRI), v. 43, p. 168.Google Scholar
Rong, J.Y., Fang, Z.J., Zhou, Z.H., Zhan, R.B., Wang, X.D., and Yuan, X.L., 2006, Originations, Radiations and Biodiversity Changes: Evidence from the Chinese Fossil Record: Beijing, Science Press, 962 pp.Google Scholar
Rosen, F.B., 1867, Über die Natur der Stromatoporen und über die Erhaltung der Hornfaser der Spongien im fossilen Zustande: Verhandlungen der Russisch-Kariserlichen Mineralogischen Gesellschaft zu St. Petersburg, v. 2, no. 4, p. 198.Google Scholar
Schmidt, F., 1858, Untersuchungen über die Silurische Formation von Esthland, Nord-Livland und Oesel: Archiv für die Naturkunde Liv-, Esth- und Kurlands (1), v. 2, p. 1248.Google Scholar
Sendino, C., Suárez Andrés, J.L., and Wilson, M.A., 2019, A rugose coral–bryozoan association from the Lower Devonian of NW Spain: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 530, p. 271280.CrossRefGoogle Scholar
Servais, T., and Harper, D.A.T., 2018, The Great Ordovician Biodiversification Event (GOBE): definition, concept and duration: Lethaia, v. 51, p. 151164.Google Scholar
Servais, T., Owen, A.W., Harper, D.A., Kröger, B., and Munnecke, A., 2010, The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 294, p. 99119.CrossRefGoogle Scholar
Sproat, C.D., and Zhan, R.B., 2019, Paleogeographic and paleoecological significance of Schachriomonia (Brachiopoda) from the Upper Ordovician of the Tarim Basin, Northwest China: Journal of Paleontology, v. 93, p. 10751087.CrossRefGoogle Scholar
Stearn, C.W., 2015a, Diversity trends of the Paleozoic Stromatoporoidea, in Selden, P.A., ed., Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Volume 4–5: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. 593597.Google Scholar
Stearn, C.W., 2015b, Internal morphology of the Paleozoic Stromatoporoidea, in Selden, P.A., ed., Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Volume 4–5: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. 487520.Google Scholar
Stock, C.W., Nestor, H., and Webby, B.D., 2015, Paleobiogeography of the Paleozoic Stromatoporoidea, in Selden, P. A., ed., Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Volume 4–5: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. 653689.Google Scholar
Sun, N., Elias, R.J., Choh, S.-J., Lee, D.-C., Wang, X.-L., and Lee, D.-J., 2016, Morphometrics and palaeoecology of the coral Agetolites from the Xiazhen Formation (Upper Ordovician), Zhuzhai, South China: Alcheringa, v. 40, p. 251274.CrossRefGoogle Scholar
Tapanila, L., and Holmer, L.E., 2006, Endosymbiosis in Ordovician–Silurian corals and stromatoporoids: a new lingulid and its trace from eastern Canada: Journal of Paleontology, v. 80, p. 750759.Google Scholar
Topper, T.P., Holmer, L.E., and Caron, J., 2015, Brachiopods hitching a ride: an early case of commensalism in the middle Cambrian Burgess Shale: Scientific Reports, v. 4, n. 6704, https://doi.org/10.1038/srep06704Google Scholar
Vinn, O., 2016, Symbiotic endobionts in Paleozoic stromatoporoids: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 453, p. 146153.CrossRefGoogle Scholar
Vinn, O., 2017, Early symbiotic interactions in the Cambrian: Palaios, v. 32, p, 231237.CrossRefGoogle Scholar
Vinn, O., and Mõtus, M.-A., 2012, New endobiotic cornulitid and Cornulites sp. aff. Cornulites celatus (Cornulitida, Tentaculita) from the Katian of Vormsi Island, Estonia: GFF, v. 134, p. 34.CrossRefGoogle Scholar
Vinn, O., and Mõtus, M.-A., 2014, Endobiotic rugosan symbionts in stromatoporoids from the Sheinwoodian (Silurian) of Baltica: PLoS One, v. 9, n. e90197, http://dx.doi.org/10.1371/journal.pone.0090197CrossRefGoogle ScholarPubMed
Vinn, O., and Wilson, M.A., 2010, Endosymbiotic Cornulites in the Sheinwoodian (early Silurian) stromatoporoids of Saaremaa, Estonia: Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, v. 257, p. 1322.CrossRefGoogle Scholar
Vinn, O., Wilson, M.A., Mõtus, M.-A., and Toom, U., 2014, The earliest bryozoan parasite: Middle Ordovician (Darriwilian) of Osmussaar Island, Estonia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 414, p. 129132.CrossRefGoogle Scholar
Vinn, O., Wilson, M.A., Toom, U., and Mõtus, M.-A., 2015, Earliest known rugosan–stromatoporoid symbiosis from the Llandovery of Estonia (Baltica): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 431, p. 15.CrossRefGoogle Scholar
Vinn, O., Ernst, A., and Toom, U., 2016, Earliest symbiotic rugosans in cystoporate bryozoan Ceramopora intercellata Bassler, 1911 from Late Ordovician of Estonia (Baltica): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 461, p. 140144.CrossRefGoogle Scholar
Vinn, O., Ernst, A., and Toom, U., 2017, Rare rugosan–bryozoan intergrowth from the Upper Ordovician of Estonia: Carnets de Geologie, v. 17, no. 7, p. 145151.CrossRefGoogle Scholar
Vinn, O., Ernst, A., and Toom, U., 2018a, Symbiosis of cornulitids and bryozoans in the Late Ordovician of Estonia (Baltica): Palaios, v. 33, no. 7, p. 290295.CrossRefGoogle Scholar
Vinn, O., Toom, U., and Ernst, A., 2018b, Intergrowth of Orbignyella germana Bassler, 1911 (Bryozoa) and Lambelasma carinatum Weyer, 1993 (Rugosa) in the pelmatozoan–bryozoan–receptaculitid reefs from the Late Ordovician of Estonia: Palaeontologia Electronica, v. 21.1.4A, 7 p., https://doi.org/10.26879/818Google Scholar
Vinn, O., Ernst, A., Wilson, M.A., and Toom, U., 2019, Symbiosis of conulariids with trepostome bryozoans in the Upper Ordovician of Estonia (Baltica): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 518, p. 8996.CrossRefGoogle Scholar
Wang, J.P., Deng, X.J., Wang, G., and Li, Y., 2012, Types and biotic successions of Ordovician reefs in China: Chinese Science Bulletin, v. 57, p. 11601168.CrossRefGoogle Scholar
Webby, B.D., 1969, Ordovician stromatoporoids from New South Wales: Palaeontology, v. 12, p. 637662.Google Scholar
Webby, B.D., 1980, Biogeography of Ordovician stromatoporoids: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 32, p. 119.CrossRefGoogle Scholar
Webby, B.D., 2002, Patterns of Ordovician reef development, in Kiessling, W., Flügel, E., and Golonka, J., eds., Phanerozoic Reef Patterns: Tulsa, SEPM Special Publication 72, p. 129–179Google Scholar
Webby, B.D., 2004, Stromatoporoids, in Webby, B.D., Paris, F., Droser, M.L., and Percival, I.G., eds., The Great Ordovician Biodiversification Event: New York, Columbia University Press, p. 112118.CrossRefGoogle Scholar
Webby, B.D., 2015a, Early evolution of the Paleozoic Stromatoporoidea, in Selden, P.A., ed., Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Volume 4–5: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. 575592.Google Scholar
Webby, B.D., 2015b, Glossary of terms applied to the hypercalcified Porifera, in Selden, P.A., ed., Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Volume 4–5: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. 397416.Google Scholar
Webby, B.D., and Banks, M.R., 1976, Clathrodictyon and Ecclimadictyon (Stromatoporoidea) from the Ordovician of Tasmania: Papers and Proceedings of the Royal Society of Tasmania, v. 110, p. 129137.CrossRefGoogle Scholar
Webby, B.D., and Morris, D.G., 1976, New Ordovician stromatoporoids from New South Wales: Journal and Proceedings of the Royal Society of New South Wales, v. 109, p. 125135.Google Scholar
Webby, B.D., et al. , 2000, Ordovician palaeobiogeography of Australasia: Memoir of the Association of Australasian Palaeontologists, v. 23, p. 63126.Google Scholar
Webby, B.D., Stearn, C.W., and Nestor, H., 2015, Biostratigraphy of the Paleozoic Stromatoporoidea, in Selden, P.A., ed., Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Volume 4–5: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. 613630.Google Scholar
Yang, J.-Z., and Dong, D.-Y., 1980, Discussion on the early Silurian strata in southwestern Hubei and northeastern Guizhou in light of fossil stromatoporoids: Acta Palaeontologica Sinica, v. 19, p. 393404.Google Scholar
Young, G.A., and Noble, J.P.A., 1989, Variation and growth in syringoporid symbiont species in stromatoporoids from the Silurian of eastern Canada: Australasian Association of Palaeontologists Memoir, v. 8, p. 9198.Google Scholar
Young, G.A., and Xu, S., 2002, Strange associations: Late Ordovician coral–stromatoporoid symbioses from south China: Geological Association of Canada/Mineralogical Association of Canada, Joint Annual Meeting, Saskatoon, 2002 Abstract, v. 27, p. 129.Google Scholar
Yu, J.-H., Bian, L.-Z., Huang, Z.-C., Chen, M.-J., Fang, Y.-T., Zhou, X.-P., and Shi, G.-J., 1992, A preliminary study on the Late Ordovician build-up at the border area between Zhejiang and Jiangxi provinces: Journal of Nanjing University (Earth Sciences), v. 4, p. 113. [in Chinese with English abstract]Google Scholar
Zapalski, M.K., 2011, Is absence of proof a proof of absence? Comments on commensalism: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 302, p. 484488.CrossRefGoogle Scholar
Zapalski, M.K., and Hubert, B.L., 2011, First fossil record of parasitism in Devonian calcareous sponges (stromatoporoids): Parasitology, v. 138, p. 132138.CrossRefGoogle ScholarPubMed
Zhan, R.-B., Rong, J.-Y., Jin, J., and Cocks, L.R.M, 2002, Late Ordovician brachiopod communities of southeast China: Canadian Journal of Earth Sciences, v. 39, p. 445468.CrossRefGoogle Scholar
Zhang, F., 2016, Recognizing morphospecies in the heliolitid coral Plasmoporella: Palaeoworld, v. 25, p. 3242.CrossRefGoogle Scholar
Zhang, M., Xia, F.-S., Taylor, P.D., Liang, K., and Ma, J.-Y., 2018, Upper Ordovician bryozoans from the Xiazhen Formation of Yushan, northeastern Jiangxi, East China: Palaeoworld, v. 27, p. 343359.CrossRefGoogle Scholar
Zhang, Y.D., Chen, X., Yu, G.H., Goldman, D., and Liu, X., 2007, Ordovician and Silurian Rocks of Northwest Zhejiang and Northeast Jiangxi Provinces, SE China: Hefei, University of Science and Technology of China Press, 189 p.Google Scholar
Zhang, Y.D., Zhan, R.B., Fan, J.X., Cheng, J.F., and Liu, X., 2010, Principal aspects of the Ordovician biotic radiation: Science China Earth Science, v. 53, p. 382394.CrossRefGoogle Scholar
Zhang, Z.F., Strotz, L.C., Topper, T.P., Chen, F.-Y., Chen, Y.-L., Liang, Y., Zhang, Z.-L., Skovsted, C.B., and Brock, G.A., 2020, An encrusting kleptoparasite–host interaction from the early Cambrian: Nature Communications, v. 11, n. 2625, https://doi.org/10.1038/s41467-020-16332-3Google ScholarPubMed
Zhen, Y.-Y., and West, R.R., 1997, Symbionts in a stromatoporoid–chaetetid association from the Middle Devonian Burdekin Basin, north Queensland: Alcheringa, v. 21, p. 271280.CrossRefGoogle Scholar