Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-31T23:17:43.546Z Has data issue: false hasContentIssue false

EQUILIBRIUM STATES FOR CENTER ISOMETRIES

Published online by Cambridge University Press:  02 June 2023

Pablo D. Carrasco*
Affiliation:
ICEx, UFMG, Belo Horizonte, Minas Gerais, Brazil BR31270-90
Federico Rodriguez-Hertz
Affiliation:
Department of Mathematics - Eberly College of Science, Penn State, State College, Pennsylvania, USA PA 16802 (hertz@math.psu.edu)

Abstract

We develop a geometric method to establish the existence and uniqueness of equilibrium states associated to some Hölder potentials for center isometries (as are regular elements of Anosov actions), in particular, the entropy maximizing measure and the SRB measure. A characterization of equilibrium states in terms of their disintegrations along stable and unstable foliations is also given. Finally, we show that the resulting system is isomorphic to a Bernoulli scheme.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

P.D.C. is partially supported by FAPEMIG Universal APQ-02160-21.

F. R.-H. is partially supported by NSF grant DMS-1900778

References

Anosov, D., Geodesic flows on closed Riemannian manifolds of negative curvature, Proc. Steklov Math. Inst. 90 (1967), 1235.Google Scholar
Bonthonneau, Y., Guillarmou, C. and Weich, T., SRB measures for Anosov actions, Preprint, Arxiv:2103.12127.Google Scholar
Bowen, R., Symbolic dynamics for hyperbolic flows, Am. J. Math. 95(2) (1973), 429460.10.2307/2373793CrossRefGoogle Scholar
Bowen, R., Bernoulli equilibrium states for axiom A diffeomorphisms, Math. Syst. Theory 8(4) (1974a), 289294.10.1007/BF01780576CrossRefGoogle Scholar
Bowen, R., Some systems with unique equilibrium states, Math. Syst. Theory 8(3) (1974b), 193202.10.1007/BF01762666CrossRefGoogle Scholar
Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lect. Notes in Math.) vol. 470 (Springer Verlag, 2008).10.1007/978-3-540-77695-6CrossRefGoogle Scholar
Bowen, R. and Ruelle, D., The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), 181202.10.1007/BF01389848CrossRefGoogle Scholar
Brin, M. and Katok, A., On local entropy, Proc. Conf. in Dyn. Sys, Rio de Janeiro (Lecture Notes in Mathematics), vol. 1007 (Springer, 1983), 3038.Google Scholar
Burns, K. and Wilkinson, A., On the ergodicity of partially hyperbolic systems, Ann. Math. 171 (2010), 451489.10.4007/annals.2010.171.451CrossRefGoogle Scholar
Buzzi, J., Thermodynamical formalism for piecewise invertible maps: Absolutely continuous invariant measures as equilibrium states, in A. Katok, R. de la Llave, Y. Pesin and H. Weiss (eds.) Smooth Ergodic Theory and Its Applications (Proceedings of Symposia in Pure Mathematics) vol. 69 (American Mathematical Society, 2001), 749783.10.1090/pspum/069/1858553CrossRefGoogle Scholar
Buzzi, J., Fisher, T. and Tahzibi, A., A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows, Ann. Scient. Ec. Norm. Sup. 55(4) (2021), 9691002.10.24033/asens.2511CrossRefGoogle Scholar
Call, B. and Thompson, D. J., Equilibrium states for self-products of flows and the mixing properties of rank 1 geodesic flows, J. London Math. Soc. 105(2) (2022), 794824.10.1112/jlms.12517CrossRefGoogle Scholar
Carrasco, P. D. and Rodriguez-Hertz, F., Contributions to the ergodic theory of hyperbolic flows: unique ergodicity for quasi-invariant measures and equilibrium states for the time-one map, To appear in Isr. J. Math. (2022).10.1007/s11856-023-2588-3CrossRefGoogle Scholar
Climenhaga, V., Pesin, Y. and Zelerowicz, A., Equilibrium measures for some partially hyperbolic systems, J. Mod. Dyn. 16(0) (2020), 155205.10.3934/jmd.2020006CrossRefGoogle Scholar
Denker, M., Keller, G. and Urbanski, M., On the uniqueness of equilibrium states for piecewise monotone mappings, Stud. Math. 1(97) (1985), 2736.Google Scholar
Dolgopyat, D., Lectures on U-Gibbs states, Lecture notes (2001).Google Scholar
Dolgopyat, D., Livsic theory for compact group extensions of hyperbolic systems, Moscow Mathematical Journal 5(1) (2005), 5566.10.17323/1609-4514-2005-5-1-55-66CrossRefGoogle Scholar
Furstenberg, H., Strict ergodicity and transformation of the torus, Am. J. Math. 83(4) (1961), 573.10.2307/2372899CrossRefGoogle Scholar
Grayson, M., Pugh, C. and Shub, M., Stably ergodic diffeomorphisms, Ann. Math. 140(2) (1994), 295329.10.2307/2118602CrossRefGoogle Scholar
Haydn, N., Canonical product structure of equilibrium states, Random Comput. Dynam. (1994).Google Scholar
Haydn, N. T. A. and Ruelle, D., Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification, Comm. Math. Phys. 148(1) (1992), 155167.10.1007/BF02102369CrossRefGoogle Scholar
Hertz, F. R., Hertz, M. A. R. and Ures, R., Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math. 172 (2008), 353381.10.1007/s00222-007-0100-zCrossRefGoogle Scholar
Hertz, F. R., Hertz, M. R. and Ures, R., A survey of partially hyperbolic dynamics, in Forni, G., Lyubich, M., Pugh, C. and Shub, M. (eds.) Partially Hyperbolic Dynamics, Laminations and Teichmüller Flow (Fields Institute Communications) vol. 51 (American Mathematical Society, 2007), 3588.Google Scholar
Hirsch, M., Pugh, C. and Shub, M., Invariant Manifolds (Lect. Notes in Math.) vol. 583 (Springer Verlag, 1977).10.1007/BFb0092042CrossRefGoogle Scholar
Katok, A., Smooth non-Bernoulli K-automorphisms, Invent. Math. 61(3) (1980), 291299.10.1007/BF01390069CrossRefGoogle Scholar
Katok, A. and Spatzier, R. J., Invariant measures for higher-rank hyperbolic abelian actions, Ergod. Theor. Dyn. Syst. 16(4) (1996), 751778.10.1017/S0143385700009081CrossRefGoogle Scholar
Ledrappier, F., Mesures d’équilibre d’entropie complètement positive, in Systèmes dynamiques II - Varsovie (Astérisque) no. 50 (Société mathématique de France, 1977).Google Scholar
Ledrappier, F. and Strelcyn, J. M., A proof of the estimation from below in Pesin’s entropy formula , Ergod. Theor. Dyn. Syst. 2 (1982), 203219.10.1017/S0143385700001528CrossRefGoogle Scholar
Ledrappier, F. and Young, L.-S., The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. Math. 122 (1985), 509539.10.2307/1971328CrossRefGoogle Scholar
Leplaideur, R., Local product structure for equilibrium states, Trans. Amer. Math. Soc. 352(4) (2000), 18891912.10.1090/S0002-9947-99-02479-4CrossRefGoogle Scholar
Li, X. and Wu, W., Bernoulli property of equilibrium states for certain partially hyperbolic diffeomorphisms, J. Dyn. Differ. Equ. (2021).10.1007/s10884-021-10057-7CrossRefGoogle Scholar
Margulis, G. A., On Some Aspects of the Theory of Anosov Systems (Springer, 2004).10.1007/978-3-662-09070-1CrossRefGoogle Scholar
Misiurewicz, M., Topological conditional entropy, Stud. Math. 55(2) (1976), 175200.10.4064/sm-55-2-175-200CrossRefGoogle Scholar
Ornstein, D. and Weiss, B., Geodesic flows are Bernoullian, Isr. J. Math. 14(2) (1973), 184198.10.1007/BF02762673CrossRefGoogle Scholar
Pesin, Y., Characteristic Lyapunov exponents, and smooth ergodic theory, Russian Math. Surveys 32(4) (1977), 55114.10.1070/RM1977v032n04ABEH001639CrossRefGoogle Scholar
Pesin, Y., Lectures on Partial Hyperbolicity and Stable Ergodicity (Zurich Lectures in Advanced Mathematics) (European Mathematical Society, 2004).10.4171/003CrossRefGoogle Scholar
Pesin, Y. B. and Sinai, Y. G., Gibbs measures for partially hyperbolic attractors, Ergod . Theor. Dyn. Syst. 2(3–4) (1982).Google Scholar
Plante, J., Anosov flows, Am. J. Math. 94 (1972), 729754.10.2307/2373755CrossRefGoogle Scholar
Pollicott, M. and Walkden, C. P., Livsic theorems for connected Lie groups, Trans. Amer. Math. Soc. 353(7) (2001), 28792895.10.1090/S0002-9947-01-02708-8CrossRefGoogle Scholar
Pugh, C. and Shub, M., Ergodicity of Anosov actions, Invent. Math. 15 (1972), 123.10.1007/BF01418639CrossRefGoogle Scholar
Pugh, C. and Shub, M., Stable ergodicity and julienne quasi-conformality, Journal of the European Mathematical Society 2(1) (2000), 152.10.1007/s100970050013CrossRefGoogle Scholar
Pugh, C., Shub, M. and Wilkinson, A., Hölder foliations, Duke Math. J. 86(3) (1997), 17546.10.1215/S0012-7094-97-08616-6CrossRefGoogle Scholar
Ratner, M., Markov partitions for anosov flows on n-dimensional manifolds, Isr. J. Math. 15(1) (1973), 92114.10.1007/BF02771776CrossRefGoogle Scholar
Ratner, M., Anosov flows with Gibbs measures are also Bernoullian, Isr. J. Math. 17(4) (1974), 380391.10.1007/BF02757140CrossRefGoogle Scholar
Rohlin, V., On the Fundamental Ideas of Measure Theory, Transl. Amer. Math. Soc. 10 (1962), 152.Google Scholar
Ruelle, D., A measure associated with Axiom-A attractors, Am. J. Math. 98(3) (1976), 619.10.2307/2373810CrossRefGoogle Scholar
Sinai, Y., Markov partitions and C-diffeomorphisms, Funct. Anal. Appl. 2(1) (1968), 6182.10.1007/BF01075361CrossRefGoogle Scholar
Sinai, Y. G., Gibbs measures in ergodic theory, Russ. Math. Surv. 27(4) (1972), 2169.10.1070/RM1972v027n04ABEH001383CrossRefGoogle Scholar
Spatzier, R. and Vischer, D., Equilibrium measures for certain isometric extensions of Anosov systems, Ergod. Theor. Dyn. Syst. 38(3) (2016), 11541167.10.1017/etds.2016.62CrossRefGoogle Scholar
Walters, P., A variational principle for the pressure of continuous transformations, Am. J. Math. 97(4) (1975), 937.10.2307/2373682CrossRefGoogle Scholar