Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-14T05:04:46.390Z Has data issue: false hasContentIssue false

Reduced Fusiform Gyrus Activation During Face Processing in Pediatric Brain Tumor Survivors

Published online by Cambridge University Press:  04 October 2021

Matthew C. Hocking*
Affiliation:
Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA19104, USA Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA19104, USA
Robert T. Schultz
Affiliation:
Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA19104, USA Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA19104, USA
Jane E. Minturn
Affiliation:
Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA19104, USA Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA19104, USA
Cole Brodsky
Affiliation:
Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA19104, USA
May Albee
Affiliation:
Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA19104, USA
John D. Herrington
Affiliation:
Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA19104, USA
*
*Correspondence and reprint requests to: Matthew C. Hocking, Ph.D., Division of Oncology, The Children’s Hospital of Philadelphia, 3615 Civic Center Blvd., 1427B Abramson Pediatric Research Center, Philadelphia, PA19104, USA. E-mail: hockingm@chop.edu.

Abstract

Objective:

The neural mechanisms contributing to the social problems of pediatric brain tumor survivors (PBTS) are unknown. Face processing is important to social communication, social behavior, and peer acceptance. Research with other populations with social difficulties, namely autism spectrum disorder, suggests atypical brain activation in areas important for face processing. This case-controlled functional magnetic resonance imaging (fMRI) study compared brain activation during face processing in PBTS and typically developing (TD) youth.

Methods:

Participants included 36 age-, gender-, and IQ-matched youth (N = 18 per group). PBTS were at least 5 years from diagnosis and 2 years from the completion of tumor therapy. fMRI data were acquired during a face identity task and a control condition. Groups were compared on activation magnitude within the fusiform gyrus for the faces condition compared to the control condition. Correlational analyses evaluated associations between neuroimaging metrics and indices of social behavior for PBTS participants.

Results:

Both groups demonstrated face-specific activation within the social brain for the faces condition compared to the control condition. PBTS showed significantly decreased activation for faces in the medial portions of the fusiform gyrus bilaterally compared to TD youth, ps ≤ .004. Higher peak activity in the left fusiform gyrus was associated with better socialization (r = .53, p < .05).

Conclusions:

This study offers initial evidence of atypical activation in a key face processing area in PBTS. Such atypical activation may underlie some of the social difficulties of PBTS. Social cognitive neuroscience methodologies may elucidate the neurobiological bases for PBTS social behavior.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acharya, M. M., Green, K. N., Allen, B. D., Najafi, A. R., Syage, A., Minasyan, H., … Limoli, C. L. (2016). Elimination of microglia improves cognitive function following cranial irradiation. Scientific Reports, 6(1), 31545.CrossRefGoogle ScholarPubMed
Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: role of the STS region. Trends in Cognitive Neuroscience, 4, 267278.CrossRefGoogle ScholarPubMed
Ameis, S. H., & Catani, M. (2015). Altered white matter connectivity as a neural substrate for social impairment in Autism Spectrum Disorder. Cortex, 62, 158181.CrossRefGoogle ScholarPubMed
Azuma, R., Deeley, Q., Campbell, L. E., Daly, E. M., Giampietro, V., Brammer, M. J., … Murphy, D. G. (2015). An fMRI study of facial emotion processing in children and adolescents with 22q11.2 deletion syndrome. Journal of Neurodevelopmental Disorders, 7, 1.CrossRefGoogle ScholarPubMed
Barrera, M., Atenafu, E. G., Schulte, F., Bartels, U., Sung, L., Janzen, L., … Zelcer, S. (2017). Determinants of social competence in pediatric brain tumor survivors who participated in an intervention study. Supportive Care in Cancer, 25, 28912898. doi: 10.1007/s00520-017-3708-6 CrossRefGoogle Scholar
Beauchamp, M. H., & Anderson, V. (2010). SOCIAL: An integrative framework for the development of social skills. Psychological Bulletin, 136(1), 3964.CrossRefGoogle ScholarPubMed
Bishop, D. (2006). Children’s Communication Checklist-2. San Antonio, TX: Pearson.Google ScholarPubMed
Blair, R. J. R. (2003). Facial expressions, their communicatory functions and neuro-cognitive substrates. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 561572.CrossRefGoogle ScholarPubMed
Bonner, M. J., Hardy, K. K., Willard, V. W., Anthony, K. K., Hood, M., & Gururangan, S. (2008). Social functioning and facial expression recognition in survivors of pediatric brain tumors. Journal of Pediatric Psychology, 33, 11421152.CrossRefGoogle ScholarPubMed
Chakraborti, A., Allen, A., Allen, B. D., Rosi, S., & Filke, J. R. (2012). Cranial irradiation alters dendritic spine density and morphology in the hippocampus. PLoS One, 7(7), e40844.CrossRefGoogle ScholarPubMed
Constantino, J. N., & Gruber, C. P. (2012). (SRSTM -2) Social Responsiveness ScaleTM (Second Ed.). Torrance, CA: Western Psychological Services.Google Scholar
Cox, R. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computations in Biomedical Research, 29(3), 162173.CrossRefGoogle ScholarPubMed
Desjardins, L., Barrera, M., Chung, J., Cataudella, D., Janzen, L., Bartels, U., … Fairclough, D. (2019). Are we friends? Best friend nominations in pediatric brain tumor survivors and associated factors. Supportive Care in Cancer. doi: 10.1007/s00520-019-04706-3 CrossRefGoogle ScholarPubMed
Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage, 53(1), 115.CrossRefGoogle ScholarPubMed
Dockstader, C., Wang, F., Bouffet, E., & Mabbott, D. J. (2014). Gamma deficits as a neural signature of cognitive impairment in children treated for brain tumors. The Journal of Neuroscience, 34(26), 88138824.CrossRefGoogle ScholarPubMed
Douaud, G., Smith, S., Jenkinson, M., Behrens, T., Johansen-Berg, H., Vickers, J., … James, A. (2007). Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. Brain, 130(9), 23752386.CrossRefGoogle ScholarPubMed
Elliott, C. D. (2007). Differential Ability Scales - Second edition (DAS-II). San Antonio, TX: Harcourt Assessment.Google Scholar
Erickson, K., & Schulkin, J. (2003). Facial expressions of emotion: A cognitive neuroscience perspective. Brain and Cognition, 52, 5260.CrossRefGoogle ScholarPubMed
Fitzgerald, J., Gallagher, L., & McGrath, J. (2016). Widespread disrupted white matter microstructure in autism spectrum disorders. Journal of Autism and Developmental Disorders. doi: 10.1007/s10803-016-2803-8 Google Scholar
Flitney, D., Webster, M., Patenaude, B., Seidman, L. J., Goldstein, J., Tordesillas Gutierrez, S., & Eickhoff, S. B. (2007). Anatomical Brain Atlases and Their Application in the FSLView Visualisation Tool. Paper presented at the Annual Meeting of the Organization for Human Brain Mapping, Chicago, IL.Google Scholar
Gauvreau, S., Lefebvre, J., Bells, S., Laughlin, S., Bouffet, E., & Mabbott, D. J. (2019). Disrupted network connectivity in pediatric brain tumor survivors is a signature of injury. The Journal of Comparative Neurology. doi: 10.1002/cne.24717 CrossRefGoogle ScholarPubMed
Gibson, E. M., Nagaraja, S., Ocampo, A., Tam, L. T., Wood, L. S., Pallegar, P. N., … Monje, M. L. (2019). Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell, 176(1), 4355.CrossRefGoogle ScholarPubMed
Glaser, B., Debbane, M., Ottet, M.-C., Vuilleumier, P., Zesiger, P., Antonarakis, S. E., & Eliez, S. (2010). Eye gaze during face processing in children and adolescents with 22q11.2 deletion syndrome. Journal of American Academy of Child and Adolescent Psychiatry, 49, 665674.Google ScholarPubMed
Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage, 14(1), 2136.CrossRefGoogle ScholarPubMed
Gschwind, M., Pourtois, G., Schwartz, S., Van De Ville, D., & Vuilleumier, P. (2012). White-matter connectivity between face-responsive regions in the human brain. Cerebral Cortex, 22, 15641576.CrossRefGoogle ScholarPubMed
Han, R., Yang, Y. M., Dietrich, J., Luebke, A., Mayer-Proschel, M., & Noble, M. (2008). Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. Journal of Biology, 7, 12.CrossRefGoogle ScholarPubMed
Herrington, J. D., Maddox, B. B., McVey, A. J., Franklin, M. E., Yerys, B. E., Miller, J. S., & Schultz, R. T. (2017). Negative valence in autism spectrum disorder: The relationship between amygdala activity, selective attention, and co-occurring anxiety. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(6), 510517. doi: 10.1016/j.bpsc.2017.03.009 Google ScholarPubMed
Herrington, J. D., Miller, J. S., Pandey, J., & Schultz, R. T. (2016). Anxiety and social deficits have distinct relationships with amygdala function in autism spectrum disorder. Social Cognitive and Affective Neuroscience. doi: 10.1093/scan/nsw015 CrossRefGoogle ScholarPubMed
Herrington, J. D., Taylor, J. M., Grupe, D. W., Curby, K. M., & Schultz, R. T. (2011). Bidirectional communication between amygdala and fusiform gyrus during facial recognition. Neuroimage, 56(4), 23482355.CrossRefGoogle ScholarPubMed
Hinkle, J. J., Olschowka, J. A., Love, T. M., Williams, J. P., & O’Banion, M. K. (2019). Cranial irradiation mediated spine loss is sex-specific and complement receptor-3 dependent in male mice. Scientific Reports, 9(1), 18899.CrossRefGoogle ScholarPubMed
Hocking, M. C., Albee, M., Brodsky, C., Shabason, E., Wang, L., Schultz, R. T., & Herrington, J. (2021). Face processing and social functioning in pediatric brain tumor survivors. Journal of Pediatric Psychology, In Press.CrossRefGoogle ScholarPubMed
Hocking, M. C., McCurdy, M., Turner, E., Kazak, A. E., Noll, R. B., & Barakat, L. P. (2015). Social competence in pediatric brain tumor survivors: Application of a model from social neuroscience and developmental psychology. Pediatric Blood & Cancer, 62, 375384.CrossRefGoogle Scholar
Hocking, M. C., Parish-Morris, J., Schultz, R. T., Minturn, J., Brodsky, C., Shabason, E., & Herrington, J. (2020). Diminished social attention in pediatric brain tumor survivors: Using eye tracking technology during naturalistic social perception. Neuropsychology, 34(3), 350358. doi: 10.1037/neu0000623 CrossRefGoogle ScholarPubMed
Hoffman, E. A., & Haxby, J. V. (2000). Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nature Neuroscience, 3, 8084.CrossRefGoogle ScholarPubMed
Ladd, G. W., & Troop-Gordon, W. (2003). The role of chronic peer difficulties in the development of children’s psychological adjustment problems. Child Development, 74(5), 13441367.CrossRefGoogle ScholarPubMed
Lansford, J. E., Dodge, K. A., Fontaine, R. G., Bates, J. E., & Pettit, G. S. (2014). Peer rejection, affiliation with deviant peers, delinquency, and risky sexual behavior. Journal of Youth and Adolescence, 43, 17421751.CrossRefGoogle ScholarPubMed
Moxon-Emre, I., Farb, N. A. S., Oyefiade, A. A., Bouffet, E., Laughlin, S., Skocic, J., … Mabbott, D. J. (2019). Facial emotion recognition in children treated for posterior fossa tumours and typically developing children: A divergence of predictors. NeuroImage: Clinical, 23.Google ScholarPubMed
Moxon-Emre, I., Taylor, M. J., Farb, N. A. S., Oyefiade, A. A., Taylor, M. D., Bouffet, E., … Mabbott, D. J. (2020). Eye movements and white matter are associated with emotional control in children treated for brain tumors. Journal of International Neuropsychological Society, 26(10), 978992.Google ScholarPubMed
Na, S., Li, L., Crosson, B., Dotson, V., MacDonald, T. J., Mao, H., & King, T. Z. (2018). White matter network topology relates to cognitive flexibility and cumulative neurological risk in adult survivors of pediatric brain tumors. NeuroImage: Clinical, 20, 485497.CrossRefGoogle ScholarPubMed
Nomi, J. S., & Uddin, L. Q. (2015). Face processing in autism spectrum disorders: From brain regions to brain networks. Neuropsychologia, 71, 201216.CrossRefGoogle ScholarPubMed
Pelphrey, K. A., & Carter, E. J. (2008). Brain mechanisms for social perception: lessons from autism and typical development. Annals of New York Academy of Science, 1145, 283299.CrossRefGoogle ScholarPubMed
Prinstein, M. J., & Aikins, J. W. (2004). Cognitive mediators of the longitudinal association between peer rejection and adolescent depressive symptoms. Journal of Abnormal Child Psychology, 32(2), 147158.CrossRefGoogle Scholar
Prinstein, M. J., Boergers, J., Spirito, A., Little, T. D., & Grapentine, W. L. (2000). Peer functioning, family dysfunction, and psychological symptoms in a risk factor model for adolescent inpatients’ suicidal ideation severity. Journal of Clinical Child Psychology, 29(3), 392405.CrossRefGoogle Scholar
Salley, C. G., Hewitt, L. L., Patenaude, A. F., Vasey, M. W., Yeates, K. O., Gerhardt, C. A., & Vannatta, K. (2015). Temperament and social behavior in pediatric brain tumor survivors and comparison peers. Journal of Pediatric Psychology, 40(3), 297308. doi: 10.1093/jpepsy/jsuo83 CrossRefGoogle ScholarPubMed
Scantlebury, N., Bouffet, E., Laughlin, S., Strother, D., McConnell, D., Hukin, J., … Mabbott, D. J. (2016). White matter and information processing speed following treatment with cranial-spinal radiation for pediatric brain tumor. Neuropsychology, 30, 425438.CrossRefGoogle ScholarPubMed
Schulte, F., Brinkman, T. M., Li, C., Fay-McClymont, T., Srivastava, D. K., Ness, K. K., … Krull, K. R. (2018). Social adjustment in adolescent survivors of pediatric central nervous system tumors: A report from the Childhood Cancer Survivor Study. Cancer, 124, 35963608. doi: 10.1002/cncr31593 CrossRefGoogle ScholarPubMed
Schultz, R. T. (2005). Developmental deficits in social perception in autism: The role of the amygdala and fusiform face area. International Journal of Developmental Neuroscience, 23(125–141).CrossRefGoogle ScholarPubMed
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., … Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23, S208S219.CrossRefGoogle ScholarPubMed
Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage, 44(1), 8398. doi: 10.1016/j.neuroimage.2008.03.061.CrossRefGoogle ScholarPubMed
Sparrow, S. S., Cicchetti, D. V., & Balla, D. A. (2005). Vineland Adaptive Behavior Scales - Second Edition. Circle Pines, MN: AGS.Google Scholar
Speer, L. L., Cook, A. E., McMahon, W. M., & Clark, E. (2007). Face processing in children with autism: Effects of stimulus contents and type. Autism, 11, 265277.CrossRefGoogle ScholarPubMed
Turner, C. D., Rey-Casserly, C., Liptak, C. C., & Chordas, C. (2009). Late effects of therapy for pediatric brain tumor survivors. Journal of Child Neurology, 24(11), 14551463.CrossRefGoogle ScholarPubMed
Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S., & Nabekura, J. (2009). Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. Journal of Neuroscience, 29(13), 39743980.CrossRefGoogle ScholarPubMed
Wang, S., Tudusciuc, O., Mamelak, A. N., Ross, I. B., Adolphs, R., & Rutishauser, U. (2014). Neurons in the human amygdala selective for perceived emotion. Proceedings of the National Academy of Science, 111, E3110E3119.Google ScholarPubMed
Willard, V. W., Berlin, K. S., Conklin, H. M., & Merchant, T. E. (2019). Trajectories of psychosocial and cognitive functioning in pediatric patients with brain tumors treated with radiation therapy. Neuro-oncology, 21(5), 678685.CrossRefGoogle ScholarPubMed
Winstion, J. S., Henson, R. N., Fine-Goulen, M. R., & Dolan, R. J. (2004). fMRI-adaptation reveals dissociable neural representations of identity and expression in face perception. Journal of Neurophysiology, 92, 18301839.CrossRefGoogle Scholar
Yeates, K. O., Bigler, E. D., Dennis, M., Gerhardt, C. A., Rubin, K. H., Stancin, T., … Vannatta, K. (2007). Social outcomes in childhood brain disorder: A heuristic integration of social neuroscience and developmental psychology. Psychological Bulletin, 133, 535556.CrossRefGoogle ScholarPubMed
Yerys, B. E., Gordon, E. M., Abrams, D. N., Satterthwaite, T. D., Weinblatt, R., Jankowski, K. F., … Vaidya, C. J. (2015). Default mode network segregation and social deficits in autism spectrum disorder: Evidence from non-medicated children. NeuroImage: Clinical, 9, 223232.CrossRefGoogle ScholarPubMed
Yerys, B. E., Herrington, J. D., Satterthwaite, T. D., Guy, L., Schultz, R. T., & Bassett, D. S. (2017). Globally weaker and topologically different: Resting-state connectivity in youth with autism. Molecular Autism, 8(39). doi: 10.1186/s13229-017-0156-6 CrossRefGoogle ScholarPubMed