Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-12T11:37:42.124Z Has data issue: false hasContentIssue false

Contrasting relationships between pyloric caecum and gonad growth in the starfish Asterias rubens: combined field and experimental approaches

Published online by Cambridge University Press:  30 March 2012

Guillemette Joly-Turquin
Affiliation:
Laboratoire de Biologie Marine (CP 160/15), Université Libre de Bruxelles, B-1050 Bruxelles, Belgium Laboratoire de l'Environnement Marin (UMR 6539), Institut Universitaire Européen de la Mer, place N. Copernic, F-29780 Plouzané, France
Philippe Dubois
Affiliation:
Laboratoire de Biologie Marine (CP 160/15), Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
Sandra Leyzour
Affiliation:
Laboratoire de l'Environnement Marin (UMR 6539), Institut Universitaire Européen de la Mer, place N. Copernic, F-29780 Plouzané, France
Philippe Pernet
Affiliation:
Laboratoire de Biologie Marine (CP 160/15), Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
Fjo De Ridder
Affiliation:
Department of Fundamental Electricity and Instrumentalisation, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Bruxelles, Belgium
Rik Pintelon
Affiliation:
Department of Fundamental Electricity and Instrumentalisation, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Bruxelles, Belgium
Monique Guillou*
Affiliation:
Laboratoire de l'Environnement Marin (UMR 6539), Institut Universitaire Européen de la Mer, place N. Copernic, F-29780 Plouzané, France
*
Correspondence should be addressed to: M. Guillou, Laboratoire de l'Environnement Marin (UMR 6539), Institut Européen de la Mer, place N. Copernic, F-29780 Plouzané, France email: mguillou@univ-brest.fr

Abstract

The common starfish, Asterias rubens, occurs in fluctuating environments in the North Atlantic. To better understand energy allocation dynamics, we recorded gonad, body wall, and pyloric caeca (storage organ) indices between 2000 and 2004 from three different habitats. We applied a Fourier transform to the data to evaluate and compare the seasonal variation in these indices. Specific effects of emersion and salinity variation were examined in two laboratory studies. Differences in energy allocation were found between sites and temporally within sites. Food availability appeared to be the most important factor controlling allocation dynamics while fluctuating salinity and/or emersion had a significant but smaller impact. Only severe food shortage reduced reproductive investment indicating a preferential energy allocation to gonads. This study is the first to encompass a broad range of populations over several reproduction cycles and emphasizes the ability of A. rubens to adapt to a fluctuating environment.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barker, M.F. and Nichols, D. (1983) Reproduction, recruitment and juvenile ecology of the starfish Asterias rubens and Marthasterias glacialis. Journal of the Marine Biological Association of the United Kingdom 63, 745765.CrossRefGoogle Scholar
Barker, M.F. and Xu, R.A. (1991) Population differences in gonad and pyloric caeca cycles of the New Zealand seastar Sclerasterias mollis (Echinodermata: Asteroidea). Marine Biology 108, 97103.CrossRefGoogle Scholar
Boolootian, R.A. (1966) Reproductive physiology. In Boolootian, R.A. (ed.) Physiology of Echinodermata. New York: Wiley Interscience Publishers, pp. 561613.Google Scholar
Buschbaum, C. (2002) Predation on barnacles of intertidal and subtidal mussel beds in the Wadden Sea. Helgoländer Marine Research 56, 3743.CrossRefGoogle Scholar
Clark, A.M. and Downey, M.E. (1992) Starfishes of the Atlantic. London: Chapman and Hal.Google Scholar
Cognetti, G. and Delavault, R. (1962) La sexualité des Asterides. Cahiers de Biologie Marine III, 157182.Google Scholar
Conover, W.J. (1980) Practical nonparametric statistics. New York: John Wiley and Sons.Google Scholar
De Ridder, F., Pintelon, R., Schoukens, J. and Gillikin, D.P. (2005) Modified AIC and MDL model selection criteria for short data. IEEE Transactions on Instrumentation and Measurement 4, 144150.CrossRefGoogle Scholar
Dubois, P., Joly, G., Pernet, P., Maage, A., Øygar, J. and Gillan, D. (2004) Egg quality, fertilization success, and population structure in field-contaminated populations of Asterias rubens. In Heinzeller, T. and Nebelsick, H. (eds) Echinoderms. London: Taylor & Francis, pp. 1519.Google Scholar
Falk-Petersen, I.B. (1982) Breeding season and egg morphology of echinoderms in Balsfjorden, Northen Norway. Sarsia 67, 215221.CrossRefGoogle Scholar
Forcucci, D. and Lawrence, J.M. (1986) Effect of low salinity on the activity, feeding, growth and absorption efficiency of Luidia clathrata (Echinodermata: Asteroidea). Marine Biology 92, 315321.CrossRefGoogle Scholar
Gemmil, J.F. (1914) The development and certain points in the adult structure of the starfish, Asterias rubens L. Philosophical Transactions of the Royal Society, B 205, 213294.Google Scholar
Guillou, M. (1980) Données sur la croissance d'Asterias rubens en Bretagne sud. In Jangoux, M. (ed.) Proceedings of the first European Conference, Bruxelles 1979. Echinoderms present and past. Brussels: A.A. Balkema, pp. 179186.Google Scholar
Guillou, M., Joly-Turquin, M., Leyzour, S.Pernet, P. and Dubois, P. (2011) Factors controlling juvenile growth and population structure of the starfish Asterias rubens in intertidal habitats: field and experimental approaches. Journal of the Marine Biological Association of the United Kingdom. doi: 10.1017/S0025315411001020.Google Scholar
Harrold, C. and Pearse, J.S. (1980) Allocation of pyloric caecum reserves in fed and starved sea stars, Pisaster giganteus (Stimpson): somatic maintenance comes before reproduction. Journal of Experimental Marine Biology and Ecology 48, 169183.CrossRefGoogle Scholar
Jangoux, M. and Van Impe, E. (1977) The annual pyloric cycle of Asterias rubens L. (Echinodermata: Asteroidea). Journal of Experimental Marine Biology and Ecology 30, 165184.CrossRefGoogle Scholar
Jangoux, M. and Vloebergh, M. (1973) Contribution à l'étude du cycle annuel de reproduction d'une population d'Asterias rubens (Echinodermata: Asteroidea) du littoral Belge. Netherlands Journal of Sea Research 6, 389408.CrossRefGoogle Scholar
Joly, G., Guillou, M. and Dubois, P. (2003) Populations dynamics of Asterias rubens under contrasted environmental conditions: preliminary results. In Féral, J.P. and David, B. (eds) Proceedings of the sixth European Conference, Banyuls 2001. Echinoderm research. Rotterdam: A.A. Balkema, pp. 36.Google Scholar
Kowalski, R. (1955) Untersuchungen zur Biology des Seesternes Asterias rubens L. in Brackwasser. Kieler Meeresforschungen 11, 201213.Google Scholar
Lacalli, T. (1981) Annual spawning cycles and planktonic larvae of benthic invertebrates from Passamaquoddy Bay, New Brunswick. Canadian Journal of Zoology 59, 433.CrossRefGoogle Scholar
Lawrence, J.M. (1973) Level, content and calorific equivalents of the lipid, carbohydrate and protein in the body components of Luidia clathrata (Echinodermata: Asteroidea: Platyasterida) in Tampa Bay. Journal of Experimental Marine Biology and Ecology 11, 263274.CrossRefGoogle Scholar
Lawrence, J.M. (1985) The energetic echinoderm. In Keegan, B.F. and O'Connor, B.D.S. (eds) Proceedings of the fifth European Conference, Galway 1984, Echinodermata. Rotterdam: A.A. Balkema, pp. 4767.Google Scholar
Lawrence, J.M. and Lane, J.M. (1982) The utilization of nutrients by post-metamorphic echinoderms. In Jangoux, M. and Lawrence, J.M. (eds) Echinoderm nutrition. Rotterdam: A.A. Balkema, pp. 331371.Google Scholar
Menge, B.A. (1976) Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecological Monographs 46, 355393.CrossRefGoogle Scholar
Menge, B.A. (1982). Effects of feeding on the environment: Asteroidea. In Jangoux, M. and Lawrence, J.M. (eds) Echinoderm nutrition. Rotterdam: A.A. Balkema, pp. 553636.Google Scholar
Menge, B.A. (1986) A preliminary study of the reproductive ecology of the seastars Asterias vulgaris and A. forbesi in New England. Bulletin of Marine Science 39, 467476.Google Scholar
Nichols, D. and Barker, M. (1984) A comparative study of reproductive and nutritional periodicities in two populations of Asterias rubens (Echinodermata: Asteroidea) from the English Channel. Journal of the Marine Biological Association of the United Kingdom 64, 471484.CrossRefGoogle Scholar
Oudejans, R.C.H.M. and van der Sluis, I. (1979a) Changes in the biochemical composition of the ovaries of the seastar Asterias rubens during its annual reproductive cycle. Marine Biology 50, 255261.CrossRefGoogle Scholar
Oudejans, R.C.H.M. and van der Sluis, I. (1979b) Storage and depletion of lipid components in the pyloric caeca and ovaries of the seastar Asterias rubens during its annual reproductive cycle. Marine Biology 53, 239247.CrossRefGoogle Scholar
Oudejans, R.C.H.M., van der Sluis, I. and van der Plas, A.J. (1979) Changes in the biochemical composition of the pyloric caeca of female seastar Asterias rubens during its annual reproductive cycle. Marine Biology 53, 231238.CrossRefGoogle Scholar
Pintelon, R. and Schoukens, J. (1996) An improved sine-wave fitting procedure for characterizing data aquisition channels. IEEE Transactions on Instrumentation and Measurement 45, 588593.CrossRefGoogle Scholar
Raymond, J.-F., Himmelman, J.H. and Guderley, H.E. (2007) Biochemical content, energy composition and reproductive effort in the broadcasting sea star Asterias vulgaris over the spawning period. Journal of Experimental Marine Biology and Ecology 341, 3244.CrossRefGoogle Scholar
Saier, B. (2001) Direct and indirect effects of seastars Asterias rubens on mussel beds (Mytilus edulis) in the Wadden Sea. Journal of Sea Research 46, 2942.CrossRefGoogle Scholar
Schoenmakers, H.J.N., Colenbrander, P.H.J.M., Peute, J. and van Oordt, P.G.W.J. (1981) Anatomy of the ovaries of the starfish Asterias rubens (Echinodermata). Cell and Tissue Research 217, 577597.CrossRefGoogle ScholarPubMed
Schoenmakers, H.J.N., Goedhart, M.J. and Voogt, P.A. (1984) Biometrical and histological aspects of the reproductive cycle of the ovaries of Asterias rubens (Echinodermata). Biological Bulletin. Marine Biological Laboratory, Woods Hole 166, 328348.CrossRefGoogle Scholar
Shirley, T.C. and Stickle, W.B. (1982) Responses of Leptasterias hexactis (Echinodermata: Asteroïdea) to low salinity. I. Survival, activity, feeding, growth and absorption efficiency. Marine Biology 69, 147154.CrossRefGoogle Scholar
Smith, G.F. (1940) Factors limiting distribution and size of the starfish. Journal of the Fisheries Research Board of Canada 5, 84103.CrossRefGoogle Scholar
Sommer, U., Meusel, B. and Stielau, C. (1999) An experimental analysis of the importance of body-size in the seastar–mussel predator–prey relationship. Acta Oecologia 20, 8186.CrossRefGoogle Scholar
Stickle, W.B. and Diehl, W.J. (1987) Effects of salinity on echinoderms. In Jangoux, M. and Lawrence, J.M. (eds) Echinoderm studies 2. Rotterdam: A.A. Balkema, pp. 235285.Google Scholar
Tyler, P.A., Gage, J.D., Paterson, G.J.L. and Rice, A.L. (1993) Dietary constraints on reproductive periodicity in two sympatric deep-sea astropectinid seastars. Marine Biology 115, 267277CrossRefGoogle Scholar
Vevers, H.G. (1949) The biology of Asterias rubens L.: growth and reproduction. Journal of the Marine Biological Association of the United Kingdom 28, 165187.CrossRefGoogle Scholar
Wares, J.P. (2001) Biogeography of Asterias: North Atlantic climate change and speciation. Biological Bulletin. Marine Biological Laboratory, Woods Hole 201, 95103.CrossRefGoogle ScholarPubMed
Zar, J.H. (1996) Data transformations. In Biostatistical analysis. 3rd edition. Upper Saddle River, NJ: Prentice-Hall Inc., pp. 277279.Google Scholar