Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-02T18:58:26.270Z Has data issue: false hasContentIssue false

Diet of the queen angelfish Holacanthus ciliaris (Pomacanthidae) in São Pedro e São Paulo Archipelago, Brazil

Published online by Cambridge University Press:  24 October 2012

Fernanda Reis
Affiliation:
Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Fernando Moraes
Affiliation:
Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Daniela Batista
Affiliation:
Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Roberto Villaça
Affiliation:
Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
Aline Aguiar
Affiliation:
Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Guilherme Muricy*
Affiliation:
Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
*
Correspondence should be addressed to: G. Muricy, Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil email: muricy@mn.ufrj.br

Abstract

Holacanthus ciliaris is an important benthic-feeding reef fish but the relationship between the composition of its diet and prey availability is still unknown. Here we determined the quantitative composition of the gut contents of H. ciliaris in São Pedro e São Paulo Archipelago, Brazil (SPSPA), and compared it to the abundance of benthic organisms in the area. Holacanthus ciliaris has a relatively diversified diet with more than 30 prey species in SPSPA, especially sponges (13 spp., average 68% of gut contents total weight), algae (12 spp., 25%) and bryozoans (3 spp., 5%). In contrast, the benthic community is composed mainly of algae (average 81% of total cover) and followed by sponges (13%), bryozoans (5%), cnidarians (0.5%), polychaetes (0.5%) and tunicates (0.5%). The most common species were the algae Caulerpella ambigua and Caulerpa racemosa var. peltata; the bryozoan Margaretta buski; and the sponges Scopalina ruetzleri, Chondrosia collectrix and Clathria calla. The Manly resource selection function showed that H. ciliaris preferred the sponges Geodia neptuni, Erylus latens, Clathria calla and Asteropus niger, among others, and avoided common species such as the sponges Scopalina ruetzleri, Dysidea etheria and Hemimycale insularis and the algae Caulerpella ambigua, Bryopsis plumosa and Neomeris annulata. Kendall's rank correlation index showed no significant correlation between prey abundance in the field and in the diet of H. ciliaris, which seems to actively choose relatively rare and less defended prey.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andréa, B.R., Batista, D., Sampaio, C.L.S. and Muricy, G. (2007) Spongivory by juvenile angelfish (Pomacanthidae) in Salvador, Bahia State, Brazil. In Custódio, M.R., Lôbo-Hajdu, G., Hajdu, E. and Muricy, G. (eds) Porifera research: biodiversity, innovation and sustainability. Série Livros 28. Rio de Janeiro: Museu Nacional, pp. 233237.Google Scholar
Armstrong, R.A., Singh, H., Torres, J., Nemeth, R.S., Can, A., Roman, C., Eustice, R., Riggs, L. and Garcia-Moliner, G. (2006) Characterizing the deep insular shelf coral reef habitat of the Hind Bank marine conservation district (US Virgin Islands) using the Seabed autonomous underwater vehicle. Continental Shelf Research 26, 194205.Google Scholar
Bellwood, D.R., Herwerden, L.V. and Konow, N. (2004) Evolution and biogeography of marine angelfishes (Pisces: Pomacanthidae). Molecular Phylogenetics and Evolution 33, 140155.CrossRefGoogle ScholarPubMed
Berumen, M.L., Pratchett, M.S. and Mccormick, M.I. (2005) Within-reef differences in diet and body condition of coral-feeding butterflyfishes (Chaetodontidae). Marine Ecology Progress Series 287, 217227.Google Scholar
Birkeland, C. and Neudecker, S. (1981) Foraging behavior of two Caribbean chaetodontids: Chaetodon capistratus and C. aculeatus . Copeia 1981, 169178.Google Scholar
Bruggemann, J.H., van Oppen, M.J.H. and Breeman, A.M. (1994) Foraging by the stoplight parrotfish Sparisoma viride. I. Food selection in different, socially determined habitats. Marine Ecology Progress Series 106, 4155.Google Scholar
Burns, E. and Ilan, M. (2003) Comparison of antipredatory defenses of Red Sea and Caribbean sponges II. Physical defense. Marine Ecology Progress Series 252, 115123.Google Scholar
Campos, T.F.C., Petta, R.A., Theye, T., Sichel, S.E., Simões, L.S.A., Srivastava, N.K., Motoki, A.A., Neto, J.V. and Andrade, F.G.G. (2009) Posição ímpar do Arquipélago de São Pedro e São Paulo na diversidade geológica da Terra. In Viana, D.L., Hazin, F.H.V. and Souza, M.A.C. (eds) O Arquipélago de São Pedro e São Paulo: 10 anos de Estação Científica. Brasília: SECIRM, pp. 5463.Google Scholar
Chanas, B. and Pawlik, J.R. (1995) Defenses of Caribbean sponges against predatory reef fish. II. Spicules, tissue toughness, and nutritional quality. Marine Ecology Progress Series 127, 195211.Google Scholar
Chanas, B. and Pawlik, J.R. (1996) Does the skeleton of a sponge provide a defense against fish predation? Oecologia 107, 225231.Google Scholar
Cruz-Rivera, E. and Hay, M.E. (2003) Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecological Monographs 73, 483506.CrossRefGoogle Scholar
Dunlap, M. and Pawlik, J.R. (1996) Video-monitored predation by Caribbean reef fishes on an array of mangrove and reef sponges. Marine Biology 126, 117123.CrossRefGoogle Scholar
Edwards, A. and Lubbock, R. (1983) Marine zoogeography of St Paul's Rocks. Journal of Biogeography 10, 6572.Google Scholar
Feitoza, B.M., Rocha, L.A., Luiz-Júnior, O.J., Floeter, S.R. and Gasparini, J.L. (2003) Reef fishes of St Paul's Rocks: new record and notes on ichthyology and zoogeography. Aqua, Journal of Ichthyology and Aquatic Biology 7, 6182.Google Scholar
Ferreira, C.E.L., Floeter, S.R., Gasparini, J.L., Ferreira, B.P. and Joyeux, J.C. (2004) Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison. Journal of Biogeography 31, 10931106.CrossRefGoogle Scholar
Ferreira, C.E.L., Luiz-Júnior, O.J., Feitoza, B.M., Ferreira, C.G.W., Noguchi, R.C., Gasparini, J.L., Joyeux, J.C., Godoy, E.A., Rangel, C.A., Rocha, L.A., Floeter, S.R. and Carvalho-Filho, A. (2009) Peixes recifais: síntese do atual conhecimento. In Viana, D.L., Hazin, F.H.V. and Souza, M.A.C. (eds) O Arquipélago de São Pedro e São Paulo: 10 anos de Estação Científica. Brasília: SECIRM, pp. 245250.Google Scholar
Floeter, S.R., Guimarães, R.Z.P., Rocha, L.A., Ferreira, C.E.L., Rangel, C.A. and Gasparini, J.L. (2001) Geographic variation in reef-fish assemblages along the Brazilian coast. Global Ecology and Biogeography 10, 423431.Google Scholar
Gasparini, J.L., Floeter, S.R., Ferreira, C.E.L. and Sazima, I. (2005) Marine ornamental trade in Brazil. Biodiversity and Conservation 14, 28832899.Google Scholar
Hay, M.E. (1997) The ecology and evolution of seaweed–herbivore interactions on coral reefs. Coral Reefs 16, 567576.Google Scholar
Hill, M.S. (1998) Spongivory on Caribbean reefs releases corals from competition with sponges. Oecologia 117, 143150.Google Scholar
Lewis, S.M. (1986) The role of herbivorous fishes in the organization of a Caribbean reef community. Ecological Monographs 56, 183200.Google Scholar
Loh, T.-L. and Pawlik, J.R. (2009) Bitten down to size: fish predation determines growth form of the Caribbean coral reef sponge Mycale laevis . Journal of Experimental Marine Biology and Ecology 374, 4550.Google Scholar
Lumbang, W.A. and Paul, V.J. (1996) Chemical defenses of the tropical green seaweed Neomeris annulata Dickie: effects of multiple compounds on feeding by herbivores. Journal of Experimental Marine Biology and Ecology 201, 185195.CrossRefGoogle Scholar
Manly, B.F.J., Mcdonald, L.L. and Thomas, D.L. (1993) Resource selection by animals. London: Chapman & Hall.Google Scholar
Moraes, F.C., Ventura, M., Klautau, M., Hajdu, E. and Muricy, G. (2006) Biodiversidade de esponjas das ilhas oceânicas brasileiras. In Alves, R.J.V. and Castro, J.W.A. (eds) Ilhas oceânicas brasileiras: da pesquisa ao manejo. Brasília: Ministério do Meio Ambiente, pp. 147178.Google Scholar
Paul, V.J., Nelson, S.G. and Sanger, H.R. (1990) Feeding preferences of adult and juvenile rabbitfish Siganus argenteus in relation to chemical defenses of tropical seaweeds. Marine Ecology Progress Series 60, 2334.Google Scholar
Pawlik, J.R. (1998) Coral reef sponges: do predatory fishes affect their distribution? Limnology and Oceanography 43, 13961399.CrossRefGoogle Scholar
Pawlik, J.R., Chanas, B., Toonen, R.J. and Fenical, W. (1995) Defenses of Caribbean sponges against predatory reef fish: I. Chemical deterrency. Marine Ecology Progress Series 127, 183194.CrossRefGoogle Scholar
Pérez-España, H. and Abitia-Cárdenas, L.A. (1996) Description of the digestive tract and feeding habits of the king angelfish and the Cortes angelfish. Journal of Fish Biology 48, 807817.Google Scholar
Pratchett, M.S. (2007) Dietary selection by coral-feeding butterflyfishes (Chaetodontidae) on the Great Barrier Reef, Australia. Raffles Bulletin of Zoology Supplement 14, 171176.Google Scholar
Pratchett, M.S. and Berumen, M.L. (2008) Interspecific variation in distributions and diets of coral reef butterflyfishes (Teleostei: Chaetodontidae). Journal of Fish Biology 73, 17301747.Google Scholar
Ralston, S. (1981) Aspects of the reproductive biology and feeding ecology of Chaetodon miliaris, a Hawaiian endemic butterflyfish. Environmental Biology of Fishes 6, 167176.Google Scholar
Randall, J.E. and Hartman, W.D. (1968) Sponge feeding fishes of the West Indies. Marine Biology 1, 216225.Google Scholar
Rogers, C.R. and Miller, J. (2001) Coral bleaching, hurricane damage, and benthic cover on coral reefs in St John, US Virgin Islands: a comparison of surveys with the chain transect method and videography. Bulletin of Marine Science 69, 459470.Google Scholar
Ruzicka, R. and Gleason, D. (2008) Latitudinal variation in spongivorous fishes and the effectiveness of sponge chemical defenses. Oecologia 154, 785794.Google Scholar
Ruzicka, R. and Gleason, D. (2009) Sponge community structure and anti-predator defenses on temperate reefs of the South Atlantic Bight. Journal of Experimental Marine Biology and Ecology 380, 3646.Google Scholar
Steinberg, P.D. and Paul, V.J. (1990) Fish feeding and chemical defenses of tropical brown algae in Western Australia. Marine Ecology Progress Series 58, 253259.Google Scholar
Ugland, K.I., Gray, J.S. and Ellingsen, K.E. (2003) The species-accumulation curve and estimation of species richness. Journal of Animal Ecology 72, 888897.Google Scholar
Viana, D.L., Hazin, F.H.V. and Souza, M.A.C. (eds) (2009) O Arquipélago de São Pedro e São Paulo: 10 anos de Estação Científica. Brasília: SECIRM.Google Scholar
Villaça, R., Pedrini, A.G., Pereira, S.M.B. and Figueiredo, M.A.O. (2006) Flora marinha bentônica das ilhas oceânicas brasileiras. In Alves, R.J.V and Castro, J.W.A. (eds) Ilhas oceânicas brasileiras: da pesquisa ao manejo. Brasília: Ministério do Meio Ambiente, pp. 105146.Google Scholar
WESSA (2008) Kendall tau rank correlation (v1.0.10) in Free Statistics Software (v1.1.23-r6). Office for Research Development and Education, available at www.wessa.net/rwasp_kendall.wasp/ (accessed 1 June 2011).Google Scholar
Wulff, J.L. (1994) Sponge feeding by Caribbean angelfishes, trunkfishes, and filefishes. In van Soest, R.W.M., van Kempen, Th.M.G. and Braekman, J.C. (eds) Sponges in time and space: biology, chemistry, paleontology. Rotterdam, The Netherlands: Balkema, pp. 265271.Google Scholar
Wulff, J.L. (2000) Sponge predators may determine differences in sponge fauna between two sets of mangrove cays, Belize Barrier Reef. Atoll Research Bulletin 477, 251263.Google Scholar
Wylie, C.R. and Paul, V.J. (1988) Feeding preferences of the surgeonfish Zebrasoma flavescens in relation to chemical defenses of tropical algae. Marine Ecology Progress Series 45, 2332.Google Scholar
Yaffee, H.S. and Stargardter, F. (1963) Erythema multiforme from Tedania ignis . Archives of Dermatology 87, 601604.CrossRefGoogle ScholarPubMed

Reis et al. supplementary material

Specimens of Holacanthus ciliaris from São Pedro e São Paulo Archipelago (SPSPA) showing swimming behaviour and different chromatic patterns: the typical yellow/orange and the rare white and blue patterns (images by Fernando Moraes and Diogo Pagnoncelli).

Download Reis et al. supplementary material(Video)
Video 16.8 MB

Reis et al. supplementary material

Spearfishing and gut removal of a specimen of Holacanthus ciliaris from São Pedro e São Paulo Archipelago (SPSPA) showing large, colourful fragments of sponges and algae in gut contents( images by Aline Aguiar).

Download Reis et al. supplementary material(Video)
Video 15.7 MB