Redundant or excessive information can sometimes lead people to lean on it unnecessarily. Certain experimental designs can sometimes bias results in the researcher’s favor. And, sometimes, interesting effects are too small to be studied, practically, or are simply zero. We believe a confluence of these factors led to a recent paper (Isaac & Brough, 2014, JCR). This initial paper proposed a new means by which probability judgments can be led astray: the category size bias, by which an individual event coming from a large category is judged more likely to occur than an event coming from a small one. Our work shows that this effect may be due to instructional and mechanical confounds, rather than interesting psychology. We present eleven studies with over ten times the sample size of the original in support of our conclusion: We replicate three of the five original studies and reduce or eliminate the effect by resolving these methodological issues, even significantly reversing the bias in one case (Study 6). Studies 7–8c suggest the remaining two studies are false positives. We conclude with a discussion of the subtleties of instruction wording, the difficulties of correcting the record, and the importance of replication and open science.