Published online by Cambridge University Press: 26 January 2017
A result of Simonovits and Sós states that for any fixed graph H and any ε > 0 there exists δ > 0 such that if G is an n-vertex graph with the property that every S ⊆ V(G) contains pe(H) |S|v(H) ± δ nv(H) labelled copies of H, then G is quasirandom in the sense that every S ⊆ V(G) contains $\frac{1}{2}$p|S|2± ε n2 edges. The original proof of this result makes heavy use of the regularity lemma, resulting in a bound on δ−1 which is a tower of twos of height polynomial in ε−1. We give an alternative proof of this theorem which avoids the regularity lemma and shows that δ may be taken to be linear in ε when H is a clique and polynomial in ε for general H. This answers a problem raised by Simonovits and Sós.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.