Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T17:06:01.827Z Has data issue: false hasContentIssue false

Approaches to Exploring Spatio-Temporal Surface Dynamics in Nanoparticles with In Situ Transmission Electron Microscopy

Published online by Cambridge University Press:  20 December 2019

Ethan L. Lawrence
Affiliation:
School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ85287, USA
Barnaby D.A. Levin
Affiliation:
School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ85287, USA
Benjamin K. Miller
Affiliation:
Gatan Inc., Pleasanton, CA, USA
Peter A. Crozier*
Affiliation:
School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ85287, USA
*
*Author for correspondence: Peter A. Crozier, E-mail: crozier@asu.edu
Get access

Abstract

Many nanoparticles in fields such as heterogeneous catalysis undergo surface structural fluctuations during chemical reactions, which may control functionality. These dynamic structural changes may be ideally investigated with time-resolved in situ electron microscopy. We have explored approaches for extracting quantitative information from large time-resolved image data sets with a low signal to noise recorded with a direct electron detector on an aberration-corrected transmission electron microscope. We focus on quantitatively characterizing beam-induced dynamic structural rearrangements taking place on the surface of CeO2 (ceria). A 2D Gaussian fitting procedure is employed to determine the position and occupancy of each atomic column in the nanoparticle with a temporal resolution of 2.5 ms and a spatial precision of 0.25 Å. Local rapid lattice expansions/contractions and atomic migration were revealed to occur on the (100) surface, whereas (111) surfaces were relatively stable throughout the experiment. The application of this methodology to other materials will provide new insights into the behavior of nanoparticle surface reconstructions that were previously inaccessible using other methods, which will have important consequences for the understanding of dynamic structure–property relationships.

Type
Materials Science Applications
Copyright
Copyright © Microscopy Society of America 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aneggi, E, Boaro, M, Colussi, S, de Leitenburg, C & Trovarelli, A (2016). Chapter 289 – Ceria-based materials in catalysis: Historical perspective and future trends. In Handbook on the Physics and Chemistry of Rare Earths, vol. 50, Bünzli, J-CG & Pecharsky, VK (Eds.), pp. 209242. Elsevier. Available at http://linkinghub.elsevier.com/retrieve/pii/S0168127316300046 (accessed October 25, 2017).Google Scholar
Bals, S, Goris, B, De Backer, A, Van Aert, S & Van Tendeloo, G (2016). Atomic resolution electron tomography. MRS Bull 41, 525530.CrossRefGoogle Scholar
Bhatta, UM, Ross, IM, Sayle, TXT, Sayle, DC, Parker, SC, Reid, D, Seal, S, Kumar, A & Möbus, G (2012). Cationic surface reconstructions on cerium oxide nanocrystals: An aberration-corrected HRTEM study. ACS Nano 6, 421430.CrossRefGoogle ScholarPubMed
Blair, D & Dufresne, E (2011). The MATLAB particle tracking code repository. Available at http://physics.georgetown.edu/matlab/.Google Scholar
Bugnet, M, Overbury, SH, Wu, Z & Epicier, T (2017). Direct visualization and control of atomic mobility at {100} surfaces of ceria in the environmental transmission electron microscope. Nano Lett 17, 76527658.10.1021/acs.nanolett.7b03680CrossRefGoogle ScholarPubMed
Crocker, JC & Grier, DG (1996). Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179, 298310.10.1006/jcis.1996.0217CrossRefGoogle Scholar
Crozier, PA, Wang, R & Sharma, R (2008). In situ environmental TEM studies of dynamic changes in cerium-based oxides nanoparticles during redox processes. Ultramicroscopy 108, 14321440.10.1016/j.ultramic.2008.05.015CrossRefGoogle ScholarPubMed
Faruqi, AR, Henderson, R, Pryddetch, M, Allport, P & Evans, A (2005). Direct single electron detection with a CMOS detector for electron microscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 546(1-2), 170175.10.1016/j.nima.2005.03.023CrossRefGoogle Scholar
Faruqi, AR & McMullan, G (2018). Direct imaging detectors for electron microscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 878, 180190.CrossRefGoogle Scholar
Florea, I, Feral-Martin, C, Majimel, J, Ihiawakrim, D, Hirlimann, C & Ersen, O (2013). Three-dimensional tomographic analyses of CeO2 nanoparticles. Cryst Growth Des 13, 11101121.CrossRefGoogle Scholar
Friedrich, H, de Jongh, PE, Verkleij, AJ & de Jong, KP (2009). Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem Rev 109, 16131629.CrossRefGoogle ScholarPubMed
Helveg, S, López-Cartes, C, Sehested, J, Hansen, PL, Clausen, BS, Rostrup-Nielsen, JR, Abild-Pedersen, F & Nørskov, JK (2004). Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426429.CrossRefGoogle ScholarPubMed
Jinschek, JR (2014). Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas–solid interactions. Chem Commun 50, 2696.10.1039/C3CC49092KCrossRefGoogle ScholarPubMed
Kuwauchi, Y, Takeda, S, Yoshida, H, Sun, K, Haruta, M & Kohno, H (2013). Stepwise displacement of catalytically active gold nanoparticles on cerium oxide. Nano Lett 13, 30733077.CrossRefGoogle ScholarPubMed
Lawrence, EL & Crozier, PA (2018). Oxygen transfer at metal-reducible oxide nanocatalyst interfaces: Contrasting carbon growth from ethane and ethylene. ACS Appl Nano Mater 1, 13601369.CrossRefGoogle Scholar
Lawrence, EL, Levin, BDA, Boland, TM, Chang, SLY & Crozier, PA (2018). Identification of rapid oxygen exchange through site-dependent cationic displacements on CeO2 nanoparticles. Microsc Microanal 24, 5455.10.1017/S1431927618000764CrossRefGoogle Scholar
Levin, BDA, Lawrence, EL & Crozier, PA (2019). Tracking the Picoscale Motion of Atomic Columns during Dynamic Structural Change. Ultramicroscopy (under review).Google Scholar
Levin, BDA, Padgett, E, Chen, C-C, Scott, MC, Xu, R, Theis, W, Jiang, Y, Yang, Y, Ophus, C, Zhang, H, Ha, D-H, Wang, D, Yu, Y, Abruña, HD, Robinson, RD, Ercius, P, Kourkoutis, LF, Miao, J, Muller, DA & Hovden, R (2016). Nanomaterial datasets to advance tomography in scanning transmission electron microscopy. Sci Data 3, 160041.CrossRefGoogle ScholarPubMed
McMullan, G, Faruqi, AR, Clare, D & Henderson, R (2014). Comparison of optimal performance at 300keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147, 156163.CrossRefGoogle ScholarPubMed
Migani, A, Neyman, KM & Bromley, ST (2012). Octahedrality versus tetrahedrality in stoichiometric ceria nanoparticles. Chem Commun 48, 4199.CrossRefGoogle ScholarPubMed
Migani, A, Vayssilov, GN, Bromley, ST, Illas, F & Neyman, KM (2010). Dramatic reduction of the oxygen vacancy formation energy in ceria particles: A possible key to their remarkable reactivity at the nanoscale. J Mater Chem 20, 1053510546.CrossRefGoogle Scholar
Möbus, G, Saghi, Z, Sayle, DC, Bhatta, UM, Stringfellow, A & Sayle, TXT (2011). Dynamics of polar surfaces on ceria nanoparticles observed in situ with single-atom resolution. Adv Funct Mater 21, 19711976.CrossRefGoogle Scholar
Montini, T, Melchionna, M, Monai, M & Fornasiero, P (2016). Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116, 59876041.10.1021/acs.chemrev.5b00603CrossRefGoogle ScholarPubMed
Nilsson Pingel, T, Jørgensen, M, Yankovich, AB, Grönbeck, H & Olsson, E (2018). Influence of atomic site-specific strain on catalytic activity of supported nanoparticles. Nat Commun 9, 2722.CrossRefGoogle ScholarPubMed
Nolan, M, Fearon, J & Watson, G (2006). Oxygen vacancy formation and migration in ceria. Solid State Ionics 177, 30693074.CrossRefGoogle Scholar
Paier, J, Penschke, C & Sauer, J (2013). Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chem Rev 113, 39493985.CrossRefGoogle Scholar
Peng, Z, Somodi, F, Helveg, S, Kisielowski, C, Specht, P & Bell, AT (2012). High-resolution in situ and ex situ TEM studies on graphene formation and growth on Pt nanoparticles. J Catal 286, 2229.CrossRefGoogle Scholar
Ruskin, RS, Yu, Z & Grigorieff, N (2013). Quantitative characterization of electron detectors for transmission electron microscopy. Journal of Structural Biology 184(3), 385393.CrossRefGoogle ScholarPubMed
Sayle, TXT, Parker, SC & Sayle, DC (2004). Shape of CeO2 nanoparticles using simulated amorphisation and recrystallisation. Chem Commun 21, 2438.CrossRefGoogle Scholar
Sinclair, R, Lee, SC, Shi, Y & Chueh, WC (2017). Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy. Ultramicroscopy 176, 200211.CrossRefGoogle ScholarPubMed
Skorodumova, NV, Simak, SI, Lundqvist, BI, Abrikosov, IA & Johansson, B (2002). Quantum origin of the oxygen storage capability of ceria. Phys Rev Lett 89, 166601.CrossRefGoogle ScholarPubMed
Stadelmann, P (2018). JEMS, Electron Microscopy Software. Laussane, Switzerland: CIME-EPFL.Google Scholar
Taheri, ML, Stach, EA, Arslan, I, Crozier, PA, Kabius, BC, LaGrange, T, Minor, AM, Takeda, S, Tanase, M, Wagner, JB & Sharma, R (2016). Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170, 8695.CrossRefGoogle ScholarPubMed
Takeda, S, Kuwauchi, Y & Yoshida, H (2015). Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector. Ultramicroscopy 151, 178190.CrossRefGoogle ScholarPubMed
Takeda, S & Yoshida, H (2013). Atomic-resolution environmental TEM for quantitative in-situ microscopy in materials science. Microscopy 62, 193203.CrossRefGoogle ScholarPubMed
Tan, JPY, Tan, HR, Boothroyd, C, Foo, YL, He, CB & Lin, M (2011). Three-dimensional structure of CeO2 nanocrystals. J Phys Chem C 115, 35443551.10.1021/jp1122097CrossRefGoogle Scholar
Tang, W-X & Gao, P-X (2016). Nanostructured cerium oxide: Preparation, characterization, and application in energy and environmental catalysis. MRS Commun 6, 311329.CrossRefGoogle Scholar
Tao, FF & Crozier, PA (2016). Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem Rev 116, 34873539.10.1021/cr5002657CrossRefGoogle ScholarPubMed
Trovarelli, A & Llorca, J (2017). Ceria catalysts at nanoscale: How do crystal shapes shape catalysis? ACS Catal 7, 47164735.CrossRefGoogle Scholar
Vendelbo, SB, Elkjær, CF, Falsig, H, Puspitasari, I, Dona, P, Mele, L, Morana, B, Nelissen, BJ, van Rijn, R, Creemer, JF, Kooyman, PJ & Helveg, S (2014). Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat Mater 13, 884890.CrossRefGoogle ScholarPubMed
Wang, R, Crozier, PA & Sharma, R (2010). Nanoscale compositional and structural evolution in ceria zirconia during cyclic redox treatments. J Mater Chem 20, 7497.CrossRefGoogle Scholar
Wang, ZL & Feng, X (2003). Polyhedral shapes of CeO2 nanoparticles. J Phys Chem B 107, 1356313566.CrossRefGoogle Scholar
Yang, Z, Yang, Y, Liang, H & Liu, L (2009). Hydrothermal synthesis of monodisperse CeO2 nanocubes. Mater Lett 63, 17741777.CrossRefGoogle Scholar
Yang, Z, Zhou, K, Liu, X, Tian, Q, Lu, D & Yang, S (2007). Single-crystalline ceria nanocubes: Size-controlled synthesis, characterization and redox property. Nanotechnology 18, 185606.CrossRefGoogle Scholar
Yankovich, AB, Berkels, B, Dahmen, W, Binev, P, Sanchez, SI, Bradley, SA, Li, A, Szlufarska, I & Voyles, PM (2014). Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nat Commun 5, 4155.CrossRefGoogle ScholarPubMed
Yoshida, H, Kuwauchi, Y, Jinschek, JR, Sun, K, Tanaka, S, Kohyama, M, Shimada, S, Haruta, M & Takeda, S (2012). Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317319.CrossRefGoogle ScholarPubMed
Supplementary material: File

Lawrence et al. supplementary material

Lawrence et al. supplementary material 1

Download Lawrence et al. supplementary material(File)
File 2.2 MB

Lawrence et al. supplementary material

Lawrence et al. supplementary material 2

Download Lawrence et al. supplementary material(Video)
Video 48.6 MB

Lawrence et al. supplementary material

Lawrence et al. supplementary material 3

Download Lawrence et al. supplementary material(Video)
Video 49.1 MB