Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-10-31T23:32:22.815Z Has data issue: false hasContentIssue false

Revealing Solute Clusters in Coalescence by Atom Probe Tomography Analysis

Published online by Cambridge University Press:  14 September 2020

Rong Hu
Affiliation:
Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Room 307, Building 340, Xiaolingwei 200, Nanjing, Jiangsu 210094, China
Jizi Liu
Affiliation:
Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Room 307, Building 340, Xiaolingwei 200, Nanjing, Jiangsu 210094, China
Yidong Zhang
Affiliation:
Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Room 307, Building 340, Xiaolingwei 200, Nanjing, Jiangsu 210094, China
Gang Sha*
Affiliation:
Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Room 307, Building 340, Xiaolingwei 200, Nanjing, Jiangsu 210094, China
*
*Author for correspondence: Gang Sha, E-mail: gang.sha@njust.edu.cn
Get access

Abstract

Experimentally revealing dynamic evolution and growth behavior of small solute clusters in alloys remains a technical challenge. To date, the coalescence of the solute clusters has seldom been experimentally addressed. To address the challenge, we used atom probe tomography (APT) to access boundary information of solute clusters and identify those in close contact. By systematically investigating the population and size evolution of the clusters in close contact with aging time, we unveiled important information regarding the clusters in coalescence with the exsitu experimental technique. In this work, the maximum separation method was employed to identify clusters in APT datasets of naturally aged Al–Zn–Mg alloy. Coalescence was found to significantly contribute to the growth of small clusters and remained predominant for the formation and growth of large Guinier–Preston II ${\rm \lpar G}{\rm P}_{{\eta }^{\prime}}\rpar$ zones after 3 months aging.

Type
Materials Science Applications
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auld, JH & Cousland, SM (1974). Structure of the metastable eta prime phase in aluminium-zinc-magnesium alloys. J Aust Inst Metals 19, 194199.Google Scholar
Bachhav, M, Robert Odette, G & Marquis, EA (2014). α′ precipitation in neutron-irradiated Fe–Cr alloys. Scr Mater 74, 4851.CrossRefGoogle Scholar
Byers, S & Raftery, AE (1998). Nearest-neighbor clutter removal for estimating features in spatial point processes. J Am Stat Assoc 93(442), 577584.CrossRefGoogle Scholar
Cairney, JM, Rajan, K, Haley, D, Gault, B, Bagot, PAJ, Choi, P-P, Felfer, PJ, Ringer, SP, Marceau, RKW & Moody, MP (2015). Mining information from atom probe data. Ultramicroscopy 159, 324337.CrossRefGoogle ScholarPubMed
Ceguerra, AV, Moody, MP, Stephenson, LT, Marceau, RKW & Ringer, SP (2010). A three-dimensional Markov field approach for the analysis of atomic clustering in atom probe data. Philos Magaz 90(12), 16571683.CrossRefGoogle Scholar
Cerezo, A & Davin, L (2007). Aspects of the observation of clusters in the 3-dimensional atom probe. Surf Interface Anal 39(2-3), 184188.CrossRefGoogle Scholar
Cojocaru-Mirédin, O, Cadel, E, Vurpillot, F, Mangelinck, D & Blavette, D (2009). Three-dimensional atomic-scale imaging of boron clusters in implanted silicon. Scr Mater 60(5), 285288.CrossRefGoogle Scholar
Couturier, L, De Geuser, F & Deschamps, A (2016). Direct comparison of Fe-Cr unmixing characterization by atom probe tomography and small angle scattering. Mater Charact 121, 6167.CrossRefGoogle Scholar
De Geuser, F, Lefebvre, W & Blavette, D (2006). 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy. Philos Magaz Lett 86(4), 227234.CrossRefGoogle Scholar
Dong, Y, Etienne, A, Frolov, A, Fedotova, S, Fujii, K, Fukuya, K, Hatzoglou, C, Kuleshova, E, Lindgren, K, London, A, Lopez, A, Lozano-Perez, S, Miyahara, Y, Nagai, Y, Nishida, K, Radiguet, B, Schreiber, DK, Soneda, N, Thuvander, M, Toyama, T, Wang, J, Sefta, F, Chou, P & Marquis, EA (2019). Atom probe tomography interlaboratory study on clustering analysis in experimental data using the maximum separation distance approach. Microsc Microanal 25(2), 356366.CrossRefGoogle Scholar
Ester, M, Kriegel, H-P, Sander, J & Xu, X (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Simoudis E, Han J and Fayyad U (Eds.), pp. 226–231. Portland, OR: AAAI Press.Google Scholar
Felfer, P, Ceguerra, AV, Ringer, SP & Cairney, JM (2015). Detecting and extracting clusters in atom probe data: A simple, automated method using Voronoi cells. Ultramicroscopy 150, 3036.CrossRefGoogle Scholar
Gault, B, Cui, XY, Moody, MP, Ceguerra, AV, Breen, AJ, Marceau, RKW & Ringer, SP (2017). A nexus between 3D atomistic data hybrids derived from atom probe microscopy and computational materials science: A new analysis of solute clustering in Al-alloys. Scr Mater 131, 9397.CrossRefGoogle Scholar
Gault, B, Moody, M, Geuser, F, Tsafnat, G, La Fontaine, A, Stephenson, L, Haley, D & Ringer, S (2009). Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys 105, 034913.CrossRefGoogle Scholar
Ghamarian, I & Marquis, EA (2019). Hierarchical density-based cluster analysis framework for atom probe tomography data. Ultramicroscopy 200, 2838.Google ScholarPubMed
Hellman, O, Vandenbroucke, J, Rüsing, J, Isheim, D & Seidman, D (2000). Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal 6(5), 437444.Google ScholarPubMed
Hyde, JM, Cerezo, A & Williams, TJ (2009). Statistical analysis of atom probe data: Detecting the early stages of solute clustering and/or co-segregation. Ultramicroscopy 109(5), 502509.CrossRefGoogle ScholarPubMed
Hyde, JM, Marquis, EA, Wilford, KB & Williams, TJ (2011 a). A sensitivity analysis of the maximum separation method for the characterisation of solute clusters. Ultramicroscopy 111(6), 440447.CrossRefGoogle ScholarPubMed
Hyde, JM, Miller, MK, Cerezo, A & Smith, GDW (1995). A study of the effect of aging temperature on phase-separation in Fe-45-percent-Cr alloys. Appl Surf Sci 87-8(1-4), 311317.CrossRefGoogle Scholar
Hyde, JM, Sha, G, Marquis, EA, Morley, A, Wilford, KB & Williams, TJ (2011 b). A comparison of the structure of solute clusters formed during thermal ageing and irradiation. Ultramicroscopy 111(6), 664671.CrossRefGoogle ScholarPubMed
Kolli, RP, Seidman, D, Al-Kassab, T, Christian, JW, Geuser, F, Lefebvre, W, Blavette, D, Fultz, B, Howe, JM & Goodman, SR (2007). Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe-Cu steel. Microsc Microanal 13, 272284.CrossRefGoogle ScholarPubMed
Lefebvre, W, Philippe, T & Vurpillot, F (2011). Application of Delaunay tessellation for the characterization of solute-rich clusters in atom probe tomography. Ultramicroscopy 111(3), 200206.CrossRefGoogle ScholarPubMed
Li, XZ, Hansen, V, GjØnnes, J & Wallenberg, LR (1999). HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al–Zn–Mg alloys. Acta Mater 47(9), 26512659.Google Scholar
Li, Y-Y, Kovarik, L, Phillips, PJ, Hsu, Y-F, Wang, W-H & Mills, MJ (2012). High-resolution characterization of the precipitation behavior of an Al–Zn–Mg–Cu alloy. Philos Magaz Lett 92(4), 166178.CrossRefGoogle Scholar
Liu, J, Hu, R, Zheng, J, Zhang, Y, Ding, Z, Liu, W, Zhu, Y & Sha, G (2020). Formation of solute nanostructures in an Al–Zn–Mg alloy during long-term natural aging. J Alloys Compds 821, 153572.CrossRefGoogle Scholar
Liu, JZ, Chen, JH, Yang, XB, Ren, S, Wu, CL, Xu, HY & Zou, J (2010). Revisiting the precipitation sequence in Al–Zn–Mg-based alloys by high-resolution transmission electron microscopy. Scr Mater 63(11), 10611064.CrossRefGoogle Scholar
Mao, Z, Sudbrack, CK, Yoon, KE, Martin, G & Seidman, DN (2007). The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy. Nat Mater 6(3), 210216.Google Scholar
Marceau, RKW (2016). Atomic-scale analysis of light alloys using atom probe tomography. Mater Sci Technol 32(3), 209219.CrossRefGoogle Scholar
Marceau, RKW, Sha, G, Lumley, RN & Ringer, SP (2010). Evolution of solute clustering in Al–Cu–Mg alloys during secondary ageing. Acta Mater 58(5), 17951805.CrossRefGoogle Scholar
Marioara, CD, Lefebvre, W, Andersen, SJ & Friis, J (2013). Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2. J Mater Sci 48(10), 36383651.CrossRefGoogle Scholar
Marlaud, T, Deschamps, A., Bley, F, Lefebvre, W. & Baroux, B (2010). Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys. Acta Materialia 58(1), 248260.CrossRefGoogle Scholar
Marquis, EA, Bachhav, M, Chen, Y, Dong, Y, Gordon, LM & McFarland, A (2013). On the current role of atom probe tomography in materials characterization and materials science. Curr Opin Solid State Mater Sci 17(5), 217223.CrossRefGoogle Scholar
Marquis, EA & Hyde, JM (2010). Applications of atom-probe tomography to the characterisation of solute behaviours. Mater Sci Eng R-Rep 69(4–5), 3762.CrossRefGoogle Scholar
Miller, MK & Forbes, RG (2009). Atom probe tomography. Mater Charact 60(6), 461469.CrossRefGoogle Scholar
Miller, MK & Hetherington, MG (1991). Local magnification effects in the atom probe. Surf Sci 246(1-3), 442449.CrossRefGoogle Scholar
Miller, MK, Kelly, TF, Rajan, K & Ringer, SP (2012). The future of atom probe tomography. Mater Today 15(4), 158165.CrossRefGoogle Scholar
Miller, MK & Kenik, EA (2004). Atom probe tomography: A technique for nanoscale characterization. Microsc Microanal 10(3), 336341.CrossRefGoogle ScholarPubMed
Miller, MK & Smith, GDW (1989). Atom Probe Microanalysis: Principles and Applications to Materials Problems. Pittsburgh, PA: Materials Research Society.Google Scholar
Miller, MK & Yao, L (2013). Limits of detectability for clusters and solute segregation to grain boundaries. Curr Opin Solid State Mater Sci 17(5), 203210.CrossRefGoogle Scholar
Moody, MP, Stephenson, LT, Ceguerra, AV & Ringer, SP (2008). Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data. Microsc Res Technol 71(7), 542550.CrossRefGoogle ScholarPubMed
Moody, MP, Stephenson, LT, Liddicoat, PV & Ringer, SP (2007). Contingency table techniques for three dimensional atom probe tomography. Microsc Res Technol 70(3), 258268.CrossRefGoogle ScholarPubMed
Ogura, T, Hirosawa, S, Cerezo, A & Sato, T (2010). Atom probe tomography of nanoscale microstructures within precipitate free zones in Al–Zn–Mg(–Ag) alloys. Acta Mater 58(17), 57145723.Google Scholar
Philippe, T, De Geuser, F, Duguay, S, Lefebvre, W, Cojocaru-Mirédin, O, Da Costa, G & Blavette, D (2009). Clustering and nearest neighbour distances in atom-probe tomography. Ultramicroscopy 109(10), 13041309.CrossRefGoogle ScholarPubMed
Philippe, T, Duguay, S & Blavette, D (2010). Clustering and pair correlation function in atom probe tomography. Ultramicroscopy 110(7), 862865.Google ScholarPubMed
Ringer, SP, Hono, K, Sakurai, T & Polmear, IJ (1997). Cluster hardening in an aged Al-Cu-Mg alloy. Scr Mater 36(5), 517521.CrossRefGoogle Scholar
Sha, G & Cerezo, A (2004). Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Mater 52(15), 45034516.CrossRefGoogle Scholar
Sha, G & Cerezo, A (2005). Kinetic Monte Carlo simulation of clustering in an Al–Zn–Mg–Cu alloy (7050). Acta Mater 53(4), 907917.CrossRefGoogle Scholar
Stephenson, LT, Moody, MP, Gault, B & Ringer, SP (2013). Nearest neighbour diagnostic statistics on the accuracy of APT solute cluster characterisation. Philos Magaz 93(8), 975989.CrossRefGoogle Scholar
Stephenson, LT, Moody, MP, Liddicoat, PV & Ringer, SP (2007). New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc Microanal 13(6), 448463.CrossRefGoogle ScholarPubMed
Styman, PD, Hyde, JM, Parfitt, D, Wilford, K, Burke, MG, English, CA & Efsing, P (2015). Post-irradiation annealing of Ni–Mn–Si-enriched clusters in a neutron-irradiated RPV steel weld using atom probe tomography. J Nucl Mater 459, 127134.CrossRefGoogle Scholar
Sudbrack, CK, Noebe, RD & Seidman, DN (2006). Direct observations of nucleation in a nondilute multicomponent alloy. Phys Rev B 73(21), 212101.CrossRefGoogle Scholar
Vaumousse, D, Cerezo, A & Warren, PJ (2003). A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. Ultramicroscopy 95, 215221.CrossRefGoogle ScholarPubMed
Vurpillot, F, Bostel, A & Blavette, D (2000). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76(21), 31273129.CrossRefGoogle Scholar
Vurpillot, F, De Geuser, F, Da Costa, G & Blavette, D (2004). Application of Fourier transform and autocorrelation to cluster identification in the three-dimensional atom probe. J Microsc 216(3), 234240.CrossRefGoogle ScholarPubMed
Williams, CA, Haley, D, Marquis, EA, Smith, GDW & Moody, MP (2013). Defining clusters in APT reconstructions of ODS steels. Ultramicroscopy 132, 271278.CrossRefGoogle ScholarPubMed
Zhang, Y, Jin, S, Trimby, P, Liao, X, Murashkin, M, Valiev, R, Liu, J, Cairney, J, Ringer, S & Sha, G (2019). Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion. Acta Materialia 162, 1932.CrossRefGoogle Scholar
Supplementary material: File

Hu et al. supplementary material

Hu et al. supplementary material

Download Hu et al. supplementary material(File)
File 14.9 MB