Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-14T04:41:30.708Z Has data issue: false hasContentIssue false

Auroselenide, AuSe, a new mineral from Maletoyvayam deposit, Kamchatka peninsula, Russia

Published online by Cambridge University Press:  19 December 2022

Nadezhda Tolstykh
Affiliation:
Sobolev Institute of Geology and Mineralogy, SB RAS, prosp. Akademika Koptyuga 3, 630090 Novosibirsk, Russia
Anatoly Kasatkin*
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Fabrizio Nestola
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy
Anna Vymazalová
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
Atali Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Galina Palyanova
Affiliation:
Sobolev Institute of Geology and Mineralogy, SB RAS, prosp. Akademika Koptyuga 3, 630090 Novosibirsk, Russia
Vladimir Korolyuk
Affiliation:
Sobolev Institute of Geology and Mineralogy, SB RAS, prosp. Akademika Koptyuga 3, 630090 Novosibirsk, Russia
*
*Author for correspondence: Anatoly Kasatkin, Email: anatoly.kasatkin@gmail.com

Abstract

Auroselenide, ideally AuSe, is a new mineral from the Gaching ore occurrence of the Maletoyvayam deposit, Kamchatka peninsula, Russia. It occurs as anhedral grains up to 0.05 × 0.02 mm and as intergrowths up to 0.06 mm with maletoyvayamite–tolstykhite-series minerals, enclosed in native gold. Other associated minerals include pyrite, calaverite, fischesserite, gachingite, tetrahedrite-group minerals [stibiogoldfieldite, its As-analogue, tennantite-(Cu) and tetrahedrite-(Zn)], tripuhyite, minerals of the famatinite–luzonite and selenium–tellurium series, paraguanajuatite, petrovskaite, součekite and tiemannite. Auroselenide is bluish-grey, opaque with metallic lustre and grey streak. It is brittle and has an uneven fracture. Dcalc = 9.750 g/cm3. In reflected light, auroselenide is grey with a bluish shade. Bireflectance is very weak. No pleochroism and internal reflections are observed. In crossed polars, it is strongly anisotropic with bluish to brownish rotation tints. The reflectance values for wavelengths recommended by the Commission on Ore Mineralogy of the International Mineralogical Association are (Rmin/Rmax, %): 28.4/31.5 (470 nm), 30.2/33.3 (546 nm), 31.9/34.9 (589 nm) and 34.3/37.3 (650 nm). The principal bands in the Raman spectrum of auroselenide are at 93, 171, 200, 210 and 325 cm–1. The empirical formula calculated on the basis of 2 atoms per formula unit is (Au0.98Ag0.01)Σ0.99(Se0.79S0.17Te0.05)Σ1.01. Auroselenide is monoclinic, space group C2/m, a = 8.319(1), b = 3.616(1), c = 6.276(2) Å, β = 104.54(2)°, V = 182.74(5) Å3 and Z = 4. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.015 (54) (200); 3.033 (25) (${\bar 1}$11, 002); 2.780 (100) (${\bar 2}$02, 111); 2.172 (20) (${\bar 3}$11, 310); and 1.811 (25) (${\bar 1}$13). Auroselenide is the natural analogue of synthetic β-AuSe. The structural identity between them is confirmed by powder X-ray diffraction and Raman spectroscopy. The mineral is named according to its composition, as a combination of the main elements Au (aurum) and Se (selenium).

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: František Laufek

References

Cranton, G.E. and Heyding, R.D. (1968) The gold/selenium system and some gold selenotellurides. Canadian Journal of Chemistry, 46, 26372640.CrossRefGoogle Scholar
Cretier, J.E. and Wiegers, G.A. (1973) The crystal structure of the beta form of gold selenide, β-AuSe. Materials Research Bulletin, 8, 14271430.CrossRefGoogle Scholar
Ettema, A.R.H.F., Stegink, T.A. and Haas, C. (1994) The valence of Au in AuTe2 and AuSe studied by x-ray absorption spectroscopy. Solid State Communications, 90, 211213.CrossRefGoogle Scholar
Feng, D. and Taskinen, P. (2014) Thermodynamic stability of AuSe at temperature from (400 to 700) K by a solid state galvanic cell. The Journal of Chemical Thermodynamics, 71, 98102.CrossRefGoogle Scholar
Hedenquist, J.W. and Arribas, R.A. (2017) Epithermal ore deposits: first-order features relevant to exploration and assessment. 14th SGA Biennial Meeting, Quebec, Canada. Mineral Resources to Discover, 1, 4750.Google Scholar
Hedenquist, J.W., Arribas, A. and Gonzalez-Urien, E. (2000) Exploration for epithermal gold deposits. Reviews in Economic Geology, 13, 245277.Google Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Hustor, D.L., Sieb, S.H. and Suterb, G.F. (1995) Selenium theoretical and its importance to the study of ore genesis: the basis and its application to volcanic-hosted massive sulfide deposits using pixeprobe analysis. Nuclear Instruments and Methods in Physics Research, 104, 476480.CrossRefGoogle Scholar
Kalinin, K.B., Andreeva, E.D. and Yablokova, D.A. (2012) Textures and structures of Jubilee ore occurrence (Maletoyvayam ore field). Pp. 3948 in: Materials XI Regional youth scientific conference “The Natural Environment of Kamchatka”. Petropavlovsk-Kamchatsky, Russia [in Russian].Google Scholar
Karpov, G.A. and Pavlov, A.L. (1976) Uzon-Geyser Hydrothermal Small Ore-Forming System of Kamchatka. Science (Kuznetsov, V.A., editor). Novosibirsk, Russia, 88 pp. [in Russian].Google Scholar
Kasatkin, A.V., Nestola, F., Plášil, J., Sejkora, J., Vymazalová, A. and Škoda, R. (2023) Tolstykhite, Au3S4Te6, a new mineral from Maletoyvayam deposit, Kamchatka peninsula, Russia. Mineralogical Magazine, 87, 3439, https://doi.org/10.1180/mgm.2022.109.CrossRefGoogle Scholar
Lee, W. and Jung, D. (1999) Electronic structure study of gold selenides. Bulletin of the Korean Chemical Society, 20, 147150.Google Scholar
Machogo, F.E.L., Mthimunye, M., Sithole, K.R.K., Tetyana, P., Phao, N., Ngubeni, G.N., Mlambo, M., Mduli, P.S., Shumbula, P.M. and Moloto, N. (2019) Elucidating the structural properties of gold selenide nanostructures. New Journal of Chemistry, 43, 5773.CrossRefGoogle Scholar
Migdisov, A.A., Guo, X., Xu, H., Williams-Jones, A.E., Sun, C.J., Vasyukova, O., Sugiyama, I., Fuchs, S., Pearce, K. and Roback, R. (2017) Hydrocarbons as ore fluids. European Association of Geochemistry, Geochemical Perspectives. Letters, 5, 4752.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley and Sons, New York, USA.Google Scholar
Okrugin, V.M. (2003) New data on the age and genesis of epithermal deposits of transition zone continent-ocean (Pacific Northwest). Pp. 39–41 in: Geodynamics, Magmatism and Metallogeny of Continental Margins of the North Pacific. Materials of the XIIth Conference “Annual Meeting of the North-Eastern Branch of the WMO”. Magadan, Russia [in Russian].Google Scholar
Okrugin, V.M., Andreeva, E.D., Etschmann, B., Pring, A., Li, K., Zhao, J., Griffins, G., Lumpkin, G.R., Triani, G. and Brugger, J. (2014) Microporous gold: Confirmation of Au-replacing textures from nature. American Mineralogist, 99, 11711175.CrossRefGoogle Scholar
Palyanova, G.A., Seryotkin, Y.V., Bakakin, V.V. and Kokh, K.A. (2016a) Sulfur-selenium isomorphous substitution in the AgAu(S,Se) series. Journal of Alloys and Compounds, 664, 385391.CrossRefGoogle Scholar
Palyanova, G.A., Seryotkin, Y.V., Kokh, K.A. and Bakakin, V.V. (2016b) Isomorphism and solid solutions among Ag- and Au-selenides. Journal of Solid State Chemistry, 241, 157163.CrossRefGoogle Scholar
Palyanova, G.A., Tolstykh, N.D., Zinina, V.Yu., Kokh, K.A., Seryotkin, Yu.V. and Bortnikov, N.S. (2019) Synthetic gold chalcogenides in the Au–Te–Se–S system and their natural analogs. Doklady Earth Sciences, 487, 929934 [in Russian].CrossRefGoogle Scholar
Palyanova, G., Mikhlin, Y., Zinina, V., Kokh, K., Seryotkin, Y. and Zhuravkova, T. (2020) New gold chalcogenides in the Au–Te–Se–S system. Journal of Physics and Chemistry of Solids, 138, 109276.CrossRefGoogle Scholar
Palyanova, G., Beliaeva, T., Kokh, K., Seriotkin, Y., Moroz, T. and Tolstykh, N. (2022) Characterization of synthetic and natural gold chalcogenides by electron microprobe analysis, X-ray powder diffraction, and Raman spectroscopic methods. Journal of Raman Spectroscopy, 53, 10121022.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco.Google Scholar
Rabenau, A. and Schulz, H. (1976) The crystal structures of α-AuSe and β-AuSe. Journal of the Less-Common Metals, 48, 89101.CrossRefGoogle Scholar
Rabenau, A., Rau, H. and Rosenstein, G. (1971) Phase relations in the gold-selenium system, Journal of the Less-Common Metals, 24, 291299.CrossRefGoogle Scholar
Sejkora, J., Buixaderas, E., Škácha, P. and Plášil, J. (2018) Micro-Raman spectroscopy of natural members along CuSbS2–CuSbSe2 join. Journal of Raman Spectroscopy, 49, 13641372.CrossRefGoogle Scholar
Shapovalova, M., Tolstykh, N. and Bobrova, O. (2019) Chemical composition and varieties of sulfosalts from gold mineralization in the Gaching ore occurrence (Maletoyvayam ore field). IOP Conf. Series: Earth and Environmental Science, 319, 012019.Google Scholar
Sidorov, E.G., Borovikov, A.A., Tolstykh, N.D., Bukhanova, D.S., Palyanova, G.A. and Chubarov, V.M. (2020) Gold mineralization at the Maletoyvayam deposit (Koryak Highland, Russia) and physicochemical conditions of its formation. Minerals, 10, 1093.CrossRefGoogle Scholar
Simon, G., Kesler, S.E. and Essene, E.J. (1997) Phase relations among selenides, sulfides, tellurides, and oxides: II. Applications to selenide-bearing ore deposits. Economic Geology, 92, 468484.CrossRefGoogle Scholar
Škácha, P., Buixaderas, E., Plášil, J., Sejkora, J., Goliáš, V. and Vlček, V. (2014) Permingeatite, Cu3SbSe4, from Příbram (Czech Republic): Description and Raman spectroscopy investigations of the luzonite-subgroup of minerals. The Canadian Mineralogist, 52, 501511.CrossRefGoogle Scholar
Škácha, P., Sejkora, J. and Plášil, J. (2017) Selenide mineralization in the Příbram uranium and base-metal district (Czech Republic). Minerals, 7, 91.CrossRefGoogle Scholar
Tolstykh, N., Vymazalová, A., Tuhý, M. and Shapovalova, M. (2018) Conditions of Au–Se–Te mineralization in the Gaching ore occurrence (Maletoyvayam ore field), Kamchatka, Russia. Mineralogical Magazine, 82, 649674.CrossRefGoogle Scholar
Tolstykh, N., Palyanova, G., Bobrova, O. and Sidorov, E. (2019) Mustard gold of the Gaching ore deposit (Maletoyvayam ore Field, Kamchatka, Russia). Minerals, 9, 489.CrossRefGoogle Scholar
Tolstykh, N.D., Tuhý, M., Vymazalová, A., Plášil, J., Laufek, F., Kasatkin, A.V., Nestola, F. and Bobrova, O.V. (2020) Maletoyvayamite, Au3Se4Te6, a new mineral from Maletoyvayam deposit, Kamchatka peninsula, Russia. Mineralogical Magazine, 84, 117123.CrossRefGoogle Scholar
Tolstykh, N.D., Tuhý, M., Vymazalová, A., Laufek, F., Plášil, J. and Košek, F. (2022a) Gachingite, Au(Te1–xSex) 0.2 ≈ x ≤ 0.5, a new mineral from Maletoyvayam deposit, Kamchatka peninsula, Russia. Mineralogical Magazine, 86, 205213.CrossRefGoogle Scholar
Tolstykh, N., Kasatkin, A., Nestola, F., Vymazalová, A., Agakhanov, A., Palyanova, G. and Korolyuk, V. (2022b) Auroselenide, IMA 2022-052. CNMNC Newsletter 69. Mineralogical Magazine, 86, https://doi.org/10.1180/mgm.2022.115.Google Scholar
Tolstykh, N.D., Bortnikov, N.S., Shapovalova, M.O. and Shaparenko, E.O. (2022c) The role of organic compounds in the formation of epithermal gold-silver deposits of Kamchatka, Russia. Doklady Earth Sciences, 507, 1320 [in Russian].CrossRefGoogle Scholar
Tsukanov, N.V. (2015) Tectonic-stratigraphic terranes, Kamchatka active margins: structure, composition and geodynamics. Proceedings of the annual conference “Volcanism and related processes”. Petropavlovsk-Kamchatsky: IVS FEB RAS, 97–103.Google Scholar
Wagner, F.E., Palade, P., Friedl, J., Filoti, G. and Wang, N. (2010) 197Au Mössbauer study of gold selenide, AuSe. Journal of Physics, Conference Series, 217, 012039.CrossRefGoogle Scholar
Warr, L.N. (2021) IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
Williams-Jones, A., Bowell, R. and Migdisov, A. (2009) Gold in solution. Elements, 5, 281287.CrossRefGoogle Scholar
Yuningsih, E.T., Matsueda, H. and Rosana, M.F. (2016) Diagnostic genesis features of Au-Ag selenide-telluride mineralization of Western Java Deposits. Indonesian Journal of Geosciences, 3, 6776.Google Scholar