Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-01T09:16:09.534Z Has data issue: false hasContentIssue false

Ermakovite (NH4)(As2O3)2Br, a new exhalative arsenite bromide mineral from the Fan-Yagnob coal deposit, Tajikistan

Published online by Cambridge University Press:  14 October 2022

Vladimir Yu. Karpenko
Affiliation:
Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy pr. 18-2, 119071 Moscow, Russia
Leonid A. Pautov
Affiliation:
Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy pr. 18-2, 119071 Moscow, Russia Institute of Mineralogy of South Urals Federal Research Center of Mineralogy and Geoecology UB RAS, Miass, Chelyabinsk district, 456317, Russia
Oleg I. Siidra*
Affiliation:
Department of Crystallography, St. Petersburg State University, University Emb., 7/9, St. Petersburg, 119034, Russia Kola Science Center, Russian Academy of Sciences, Apatity, Murmansk Region, 184200 Russia, 683006, Russia
Mirak A. Mirakov
Affiliation:
Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy pr. 18-2, 119071 Moscow, Russia
Anatoly N. Zaitsev
Affiliation:
Department of Mineralogy, St. Petersburg State University, University Emb., 7/9, St. Petersburg, 119034, Russia
Pavel Yu. Plechov
Affiliation:
Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy pr. 18-2, 119071 Moscow, Russia
Saimudasir Makhmadsharif
Affiliation:
Institute of Geology, Earthquake Engineering and Seismology, Academy of Sciences of the Republic of Tajikistan, Aini 267, 734063, Dushanbe, Tajikistan
*
*Author for correspondence: Oleg I. Siidra, Email: o.siidra@spbu.ru

Abstract

In terrestrial rocks, Br minerals are extremely rare with only nine minerals known where Br is a dominant component. A new arsenite bromide mineral ermakovite, (NH4)(As2O3)2Br, was discovered at the tract of Kukhi-Malik, Fan-Yagnob coal deposit, ca. 75 km N of Dushanbe, Tajikistan. Ermakovite is a fumarolic mineral formed directly from gas from a natural underground coal fire. Associated minerals are sulfur, realgar, amorphous As-sulfides, salammoniac, alacránite, bonazziite and thermessaite-(NH4). In addition, there are amorphous As2S3 intergrowths associated with ermakovite. The mineral typically occurs as tabular or prismatic hexagonal crystals up to 200 μm with the following forms: c (001), m (010) and p (014). Spherulites and multi-twinned intergrowths are very common. The mineral is optically uniaxial (–), ω = 1.960 (5) and ɛ = 1.716(3) (589 nm). The measured density is 3.64(2) g/cm3. The mineral is insoluble in water, HCl, HNO3 and organic solvents. The empirical formula calculated on the basis of (As+Sb) = 4 atoms per formula unit is [(NH4)0.92Na0.01]0.93(As3.94Sb0.06)4.00O6.02(Br0.97Cl0.08I0.01)1.06. The strongest lines in the powder X-ray diffraction pattern are [d, Å (I, %) (hkl)]: 9.160 (80)(001); 4.560(90)(002); 3.228(100) (102); 2.629(80)(110); and 2.522(60)(103). Ermakovite is hexagonal, P6/mmm, a = 5.271(3), c = 9.157(6) Å, V = 220.3(3) Å3 and Z = 1. The sandwich-type structure of ermakovite is based on three types of layers: (1) a honeycomb [As2O3] arsenite layer; (2) an NH4+ layer; and (3) a Br layer. The layer stacking sequence is ⋅⋅⋅NH4–As2O3–Br–As2O3–NH4⋅⋅⋅. Ermakovite has a synthetic analogue. Infrared and Raman spectra are also reported.

An overview of the processes that give rise to high concentrations of Br, leading to the formation of exotic Br minerals, is given.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian Graham

References

Africano, F., Van Rompaey, G., Bernard, A. and Le Guern, F. (2002) Deposition of trace elements from high temperature gases of Satsuma-Iwojima volcano. Earth, Planets and Space, 54, 275286.CrossRefGoogle Scholar
Bahfenne, S. and Frost, R.L. (2010) A review of the vibrational spectroscopic studies of arsenite, antimonite, and antimonate minerals. Applied Spectroscopy Reviews, 45, 101129.CrossRefGoogle Scholar
Bernard, A. (1985) Les Mécanismes de Condensation des Gaz Volcaniques (Chimie, Minéralogie et Équilibres des Phases Condensées Majeures et Mineures). PhD thesis, Université Libre de Bruxelles, Belgium, 412 pp.Google Scholar
Block, C. and Dams, R. (1975) Inorganic composition of Belgian coals and coal ashes. Environmental Science and Technology, 9, 146150.CrossRefGoogle Scholar
Bonazzi, P., Bindi, L., Olmi, F. and Menchetti, S. (2003) How many alacranites do exist? A structural study of non-stoichiometric As8S9–x crystals. European Journal of Mineralogy, 15, 282288.CrossRefGoogle Scholar
Campostrini, I., Demartin, F. and Scavini, M. (2019) Russoite, NH4ClAs23+ O3(H2O)0.5, a new phylloarsenite mineral from Solfatara Di Pozzuoli, Napoli, Italy. Mineralogical Magazine, 83, 8994.CrossRefGoogle Scholar
Coradossi, N., Garavelli, A., Salamida, M. and Vurro, F. (1996) Evolution of Br/ Cl ratios in fumarolic salammoniac from Vulcano (Aeolian Islands, Italy). Bulletin of Volcanology, 58, 310316.CrossRefGoogle Scholar
Correns, C.W. (1956) The geochemistry of the halogens. Physics and Chemistry of the Earth, Volume 1, 181233.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M., Campostrini, I. and Orlandi, P. (2008) Demicheleite, BiSBr, a new mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy. American Mineralogist, 93, 16031607.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2009) Demicheleite-(Cl), BiSCl, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy. American Mineralogist, 94, 10451048.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2010) Demicheleite-(I), BiSI, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 74, 141145.CrossRefGoogle Scholar
Ermakov, N.P. (1935) Pasrud-Yagnobskoye coal deposit and mines of the Kan-Tag mountain. Pp. 4766 in: On Geology of Coal Deposits of Tajikistan. Materials of Tajik-Pamir Expedition 1933, volume 12, [in Russian].Google Scholar
Eskenazy, G. and Vassilev, S. (2001) Geochemistry of chlorine and bromine in Bulgarian coals. Review of the Bulgarian Geological Society, 62, 3746.Google Scholar
Fontes, J.Ch. and Matray, J.M. (1993) Geochemistry and origin of formation brines from the Paris Basin, France. 1. Brines associated with Triassic salts. Chemical Geology, 109, 149175.Google Scholar
Fozilov, Dj.N. and Alidodov, D.A. (2017) Elements of the impurities in coal coalfield background Yagnob. News of the Academy of sciences of the Republic of Tajikistan, 167, 101110 [in Russian].Google Scholar
Garavelli, A., Laviano, R. and Vurro, F. (1997) Sublimate deposition from hydrothermal fluids at the Fossa crater – Vulcano, Italy. European Journal of Mineralogy, 9, 423432.CrossRefGoogle Scholar
Garavelli, A., Mitolo, D., Pinto, D., Laviano, R. and Vurro, F. (2013) Lucabindiite, (K,NH4)As4O6(Cl,Br), a new fumarole mineral from the “La Fossa” crater at Vulcano, Aeolian Islands, Italy. American Mineralogist, 98, 470477.CrossRefGoogle Scholar
Harlov, D.E. and Aranovich, L. (editors) (2018) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Surface, Crust, and Mantle. Springer International Publishing AG, 1030 pp.CrossRefGoogle Scholar
Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V. and Wänke, H. (1979) The abundances of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. Proceedings of the 10th Lunar and Planetary Science Conference, Volume 2, 20312050.Google Scholar
Kampf, A., Nash, B., Dini, M. and Molina Donoso, A.A. (2014) Torrecillasite, NaAs4O6Cl, a new mineral from the Torrecillas mine, Iquique Province, Chile: description and crystal structure. Mineralogical Magazine, 78, 747755.CrossRefGoogle Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2016) Gajardoite, KCa0.5As3+4O6Cl2⋅5H2O, a new mineral related to lucabindiite and torrecillasite from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 80, 12651272.CrossRefGoogle Scholar
Kampf, A.R., Nash, B.P. and Molina Donoso, A.A. (2020) Mauriziodiniite, (NH4)(As2O3)2I, the ammonium and iodine analogue of lucabindiite from the Torrecillas mine, Iquique, Chile. Mineralogical Magazine, 84, 267273.CrossRefGoogle Scholar
Karpenko, V.Y., Pautov, L.A., Siidra, O.I. and Mirakov, M.A. (2020) Ermakovite, IMA 2020-054, in: CNMNC Newsletter 58, Mineralogical Magazine, 84, https://doi.org/10.1180/mgm.2020.93Google Scholar
Karpenko, V.Yu., Pautov, L.A., Мirakov, М.А., Siidra, O.I., Makhmadsharif, S., Shodibekov, M. and Plechov, P.Yu. (2021) Bonazziite and alacranite from sublimates of the natural underground coal fire at Kukhi-Malik tract, Tajikistan. New data on minerals, 54, 8293.Google Scholar
Kendrick, M.A. (2016) Halogens. Pp. 15 in: Encyclopedia of Geochemistry, Volume H (White, W.M., editor). Springer International Publishing AG.Google Scholar
Kendrick, M.A. (2018) Halogens in seawater, marine sediments and the altered oceanic lithosphere. Pp. 591648 in: The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Surface, Crust, and Mantle (Harlov, D.E., Aranovich, L., editors). Springer International Publishing AG.CrossRefGoogle Scholar
Krauskopf, K.B. (1979) Introduction to Geochemistry, 2nd edition. McGraw-Hill, Tokyo, 617 pp.Google Scholar
Kurnakov, N.S., Kuznetsov, V.G., Dzens-Litovskiy, A.I. and Ravich, M.I. (1936) Salt lakes of Crimea. Izdatelstvo Akademii nauk SSSR, Moscow-Leningrad, 278 pp. [in Russian].Google Scholar
Li, M.G., Yan, F., Wang, Z.R., Liu, X.M., Fang, X.M. and Li, J. (2015) The origins of the Mengye potash deposits in the Lanping-Simao Basin, Yunnan Province, Western China. Ore Geology Reviews, 69, 174186.CrossRefGoogle Scholar
Mangler, M.F., Marks, M.A.W., Zaitzev, A.N., Eby, G.N. and Markl, G. (2014) Halogens (F, Cl and Br) at Oldoinyo Lengai volcano (Tanzania): effects of magmatic differentiation, silicate–natrocarbonatite melt separation and surface alteration of natrocarbonatite. Chemical Geology, 365, 4353.CrossRefGoogle Scholar
Marks, A.W.M., Wenzel, T., Whitehouse, M.J., Loose, M., Zack, T., Barth, M., Worgard, L., Krasz, V., Eby, G.N., Stosnach, H. and Markl, G. (2012) The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: an integrated analytical approach. Chemical Geology, 291, 241255.CrossRefGoogle Scholar
Mi, J.-X. and Pan, Y. (2018) Halogen-rich minerals: crystal chemistry and geological significances. Pp. 123184 in: The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Surface, Crust, and Mantle (Harlov, D.E. and Aranovich, L., editors). Springer International Publishing AG.CrossRefGoogle Scholar
Mirakov, M.A., Pautov, L.A., Karpenko, V.Yu., Faiziev, A.R. and Makhmadsharif, S. (2019) Pauflerite β-VO(SO4) from sublimations of the natural underground fire at Kukhi-Malik (Ravat) tract, Fan-Yagnob coal deposit, Tajikistan. New data on minerals, 53, 114120 [in Russian].Google Scholar
Nasdala, L. and Pekov, I.V. (1993) Ravatite, C14H10, a new organic mineral species from Ravat, Tadzhikistan. European Journal of Mineralogy, 5, 699705.CrossRefGoogle Scholar
Novikov, V.P. and Suprychev, V.V. (1986) Conditions of the modern mineral genesis at the underground firing coals at Fan-Yagnobskoye deposit. Mineralogia Tadzhikistana, 7, 91104 [in Russian].Google Scholar
Novikov, V.P., Suprychev, V.V. and Babayev, M.A. (1979) Salammoniac from sublimates of the underground coal fire at the Ravat coal deposit (Central Tadzhikistan). Doklady Akademii nauk Tadzhikskoyi SSR, 12, 687 [in Russian].Google Scholar
Pasero, M. (2022) The New IMA List of Minerals. International Mineralogical Association. Commission on new minerals, nomenclature and classification (IMA-CNMNC). http://cnmnc.main.jp/Google Scholar
Pautov, L.A., Mirakov, M.A., Siidra, O.I., Faiziev, A.R., Nazarchuk, E.V., Karpenko, V.Y. and Makhmadsharif, S. (2020) Falgarite, K4(VO)3(SO4)5, a new mineral from sublimates of a natural underground coal fire at the tract of Kukhi-Malik, Fan-Yagnob coal deposit, Tajikistan. Mineralogical Magazine, 84, 455462.CrossRefGoogle Scholar
Peng, B.-X. and Wu, D.-S. (2014) Distribution and content of bromine in Chinese coals. Journal of Fuel Chemistry and Technology, 42, 769773.CrossRefGoogle Scholar
Peng, B. and Wu, D. (2015) Study on bromine release from bituminous coal during combustion. Fuel, 157, 8286.CrossRefGoogle Scholar
Pertlik, F. (1988) The compounds KAs4O6X (X= Cl, Br, I) and NH4As4O6X (X= Br, I): Hydrothermal syntheses and structure determinations. Monatshefte für Chemie, 119, 451456.CrossRefGoogle Scholar
Plini the Elder (1866) Secundi Naturalis historia (edited D. Detlefsen). Vol. 1, Liber 2, Sect. 106. Berolini, Weidmannos [in Latin].Google Scholar
Sajwan, K.S., Twardowska, I., Punshon, T. and Alva, A.K. (editors) (2006) Coal Combustion Byproducts and Environmental Issues. Springer, New York, 241 pp.CrossRefGoogle Scholar
Sejkora, J. (2002) Minerální asociace hořícího odvalu dolu Kateřina v Radvanicích u Trutnova a procesy jejího vzniku. MS, disertační práce, Přírodovědecká fakulta, Masarykova univerzita, Brno, 1144 [in Czech].Google Scholar
Spears, D.A. (2005) A review of chlorine and bromine in some United Kingdom coals. International Journal of Coal Geology, 64, 257265.CrossRefGoogle Scholar
Symonds, R. (1993) Scanning electron microscope observations of sublimates from Merapi Volcano, Indonesia. Geochemical Journal, 26, 337350.CrossRefGoogle Scholar
Symonds, R.B. and Reed, M.H. (1993) Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. American Journal of Science, 293, 758864.CrossRefGoogle Scholar
Szymanski, H.A., Marabella, L., Hoke, J. and Harter, J. (1968) Infrared and Raman studies of arsenic compounds. Applied Spectroscopy, 22, 297304.CrossRefGoogle Scholar
Vassilev, S.V., Eskenazy, G.M. and Vassilev, C.G. (2000a) Contents, modes of occurrence and origin of chlorine and bromine in coal. Fuel, 79, 903921.CrossRefGoogle Scholar
Vassilev, S.V., Eskenazy, G.M. and Vassilev, C.G. (2000b) Contents, modes of occurrence and behaviour of chlorine and bromine in combustion wastes from coal-fired power stations. Fuel, 79, 923937.CrossRefGoogle Scholar
Vernadsky, V.I. (1934) Essays on Geochemistry. ONTI, Gorgeolneft'izdat, Moscow, 380 pp. [in Russian].Google Scholar
Vinogradov, A.P. (1962) Average content of chemical elements in main types of the intrusive rocks of the Earth crust. Geokhimia, 7, 555571 [in Russian].Google Scholar
Wang, L.-X., Marks, M.A.W., Keller, J. and Markl, G. (2014) Halogen variations in alkaline rocks from the Upper Rhine Graben (SW Germany): Insights into F, Cl and Br behavior during magmatic processes. Chemical Geology, 380, 133144.CrossRefGoogle Scholar
Wang, L.-X., Marks, M.A.W., Wenzel, T. and Markl, G. (2016) Halogen-bearing minerals from the Tamazeght complex (Morocco): constraints on halogen distribution and evolution in alkaline to peralkaline magmatic systems. The Canadian Mineralogist, 54, 13471368.CrossRefGoogle Scholar
Worden, R.H. (2018) Halogen elements in sedimentary systems and their evolution during diagenesis. Pp. 185260 in: The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Surface, Crust, and Mantle (Harlov, D.E. and Aranovich, L., editors). Springer International Publishing AG.CrossRefGoogle Scholar
Zelenski, M. and Bortnikova, S. (2005) Sublimate speciation at Mutnovsky volcano, Kamchatka. European Journal of Mineralogy, 17, 107118.CrossRefGoogle Scholar
Supplementary material: File

Karpenko et al. supplementary material

Karpenko et al. supplementary material 1

Download Karpenko et al. supplementary material(File)
File 80.7 KB
Supplementary material: File

Karpenko et al. supplementary material

Karpenko et al. supplementary material 2

Download Karpenko et al. supplementary material(File)
File 156.9 KB