Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-02T06:44:39.737Z Has data issue: false hasContentIssue false

Experimental investigation of near-liquidus andalusite-topaz relations in synthetic peraluminous haplogranites at 200 MPa

Published online by Cambridge University Press:  05 July 2018

D. B. Clarke*
Affiliation:
Department of Earth Sciences, Dalhousie University, Halifax, NS, Canada B3H 3J5
B. Wunder
Affiliation:
GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, Germany
H.-J. Förster
Affiliation:
GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, Germany
D. Rhede
Affiliation:
GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, Germany
A. Hahn
Affiliation:
GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, Germany School of Geography, Geology and the Environment, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, UK
*
* E-mail: clarke@dal.ca

Abstract

Many evolved peraluminous granite plutons contain either andalusite (Al2SiO5) or topaz (Al2SiO4(OH,F)2), but some plutons contain both of these A/NK [mol. Al2O3/(Na2O+K2O)] = ∞ phases. We present the results of experiments conducted to locate the andalusite-topaz boundary in water-saturated peraluminous haplogranite melts in T-P-Xspace, where T = 700—650°C, P = 200 MPa. andX(A/NK = 1.1, 1.2, 1.3, 1.4, and F = 0, 1, 2, 4 wt.%).The starting materials are synthetic K-Na-Al-Si gels, with added H2O and AgF, with seeds of natural andalusite and topaz, and with run times of 5—7 days. Phase identification is by electron microprobe. All experimental run products contained quartz. For all values of bulk A/NK, F concentrations ⩽ 1 wt.% favour andalusite stability, whereas F concentrations ⩾ 1 wt.% favour topaz stability. For bulk A/NK ⩽ 1.2 and intermediate F concentrations, no A/NK = phase is present; for bulk A/NK ⩾ 1.3, quench or metastable mullite formed. Topaz reaction rims on naturally occurring andalusite, frequency of naturally occurring assemblages, general chemical considerations, and experimental evidence all suggest that some topaz is the product of a peritectic reaction between an early primary magmatic andalusite and a late F-enriched melt. The appearance of such topaz is an important mineralogical expression of F activity in the melt, and may be an indicator for high field-strength Sn-W-U-Mo polymetallic mineralization.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta-Vigil, A., London, D., Dewers, T.A. and Morgan, G.B. VI (2002) Dissolution of corundum and andalusite in H2O-saturated haplogranitic melts at 800°C and 200 MPa: constraints on diffusivities and the generation of peraluminous melts. Journal of Petrology, 43, 18851908.CrossRefGoogle Scholar
Acosta-Vigil, A., London, D., Morgan, G.B. VI and Dewers, T.A. (2003) Solubility of excess alumina in hydrous granitic melts in equilibrium with peraluminous minerals at 700-800°C and 200 MPa, and applications of the aluminum saturation index. Contributions to Mineralogy and Petrology, 146, 100119.CrossRefGoogle Scholar
Barton, M.D. (1982) The thermodynamic properties of topaz solid solutions and some petrologic applications. American Mineralogist, 67, 956974.Google Scholar
Breiter, K., Forster, H.-J. and Seltmann, R. (1999) Variscan silicic magmatism and related tin-tungsten mineralization in the Erzgebirge—Slavkovsk les metallogenic province. In. Phanerozoic Metallogenesis in Europe (Rickard D. , editor). Mineralium Deposita, 34, 505521.CrossRefGoogle Scholar
Carruzzo, S., Kontak, DJ. and Clarke, D.B. (2000) Granite-hosted mineral deposits of the New Ross area, South Mountain Batholith, Nova Scotia, Canada: P, T, and X constraints of fluids using fluid inclusion thermometry and decrepitate analysis. Transactions of the Royal Society of Edinburgh, Earth Sciences, 91, 303319.CrossRefGoogle Scholar
Carruzzo, S., Kontak, D.J., Clarke, D.B. and Kyser, T.K. (2004) An integrated fluid-mineral stable-isotope study of the granite-hosted mineral deposits of the New Ross area, South Mountain Batholith, Nova Scotia, Canada: evidence for multiple reservoirs. The Canadian Mineralogist, 42, 14251441.CrossRefGoogle Scholar
Christiansen, E.H., Sheridan, M.F. and Burt, D.M. (1986) The Geology and Geochemistry of Cenozoic Topaz Rhyolites from the Western United States. Geological Society of America Special Paper, 205, 82 pp.Google Scholar
Christiansen, E.H., Haapala, I. and Hart, G.L. (2007) Are topaz rhyolites the erupted equivalents of Proterozoic rapakivi granites? Examples from the western United States and Finland. Lithos, 97, 219246.CrossRefGoogle Scholar
Clarke, D.B. and Bogutyn, P.A. (2003) Oscillatory epitactic-growth zoning in biotite and muscovite from the Lake Lewis leucogranite, South Mountain Batholith, Nova Scotia. The Canadian Mineralogist, 41, 10271047.CrossRefGoogle Scholar
Clarke, D.B., MacDonald, M.A., Reynolds, P.H. and Longstaffe, FJ. (1993) Leucogranites from the eastern part of the South Mountain Batholith, Nova Scotia. Journal of Petrology, 34, 653679.CrossRefGoogle Scholar
Clarke, D.B., MacDonald, M.A. and Erdmann, S. (2004) Chemical variation in Al2O3-CaO-Na2O-K2O space: controls on the peraluminosity of the South Mountain Batholith. Canadian Journal of Earth Sciences, 41, 785798.CrossRefGoogle Scholar
Clarke, D.B., Dorais, M., Barbarin, B., Barker, D., Cesare, B., Clarke, G., El Baghdadi, M., Erdmann, S., Forster, H.-J., Gaeta, M., Gottesmann, B., Jamieson, R.A., Kontak, D.J., Koller, F., Gomes, C.L., London, D., Morgan, G.B. VI, Neves, L.J.P.F., Pattison, D.R.M., AJ.S.C, Pereira, Pichavant, M., Rapela, C.W., Renno, A.D., Richards, S., Roberts, M., Rottura, A., Saavedra, I., Sial, A.N., Toselli, A.J., Ugidos, J. M., Uher, P., Vilaseca, C., Visona, D., Whitney, D., Williamson, B. and Woodard, H. (2005) Occurrence and origin of andalusite in peraluminous felsic igneous rocks. Journal of Petrology, 46, 441472.CrossRefGoogle Scholar
Dimitriadis, S. (1978) Some liquid compositions in the peraluminous haplogranite system. Neues Jahrbuch fur Mineralogie Monatshefte, 377—383.Google Scholar
Dolejs, D. and Baker, D.R. (2004) Thermodynamic analysis of the system Na2O-K2O-Al2O3-SiO2-H2O—F2O_i; stability of fluorine-bearing minerals in felsic igneous suites. Contributions to Mineralogy and Petrology, 146, 762778.CrossRefGoogle Scholar
Dolejs, D. and Baker, D.R. (2007a) Liquidus equilibria in the system K2O-Na2O-Al2O3-SiO2-F2O_ !-H2O to 100 MPa: I. Silicate-fluoride liquid immiscibility in anhydrous systems. Journal of Petrology, 48, 785806.CrossRefGoogle Scholar
Dolejs, D. and Baker, D.R. (2001b) Liquidus equilibria in the system K2O-Na2O-Al2O3-SiO2-F2O_ !-H2O to 100 MPa: II. Differentiation paths of fluorosilicate magmas in hydrous systems. Journal of Petrology, 48, 807828.CrossRefGoogle Scholar
Dostal, J. and Chatterjee, A.K (1995) Origin of topaz-bearing and related peraluminous granites of the Late Devonian Davis Lake pluton, Nova Scotia, Canada: crystal versus fluid fractionation. Chemical Geology, 123, 6788.CrossRefGoogle Scholar
Forster, H.-J., Tischendorf, G., Trumbull, R.B. and Gottesmann, B. (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. Journal of Petrology, 40, 16131645.CrossRefGoogle Scholar
Forster, H.-J., Romer, R.L., Gottesmann, B., Tischendorf, G. and Rhede, D. (2009) Are the granites of the Aue-Schwarzenberg Zone (Erzgebirge, Germany) a major source for metalliferous ore deposits? A geochemical, Sr-Nd-Pb isotopic, and geochronological study. Neues Jahrbuch fur Mineralogie Abhandlungen, 186, 163184.CrossRefGoogle Scholar
Gottesmann, B. and Forster, H.-J. (2004) Sekaninaite from the Satzung granite (Erzgebirge, Germany): magmatic or xenolithic. European Journal of Mineralogy, 16, 483491.CrossRefGoogle Scholar
Halter, W.E., Williams-Jones, A.E. and Kontak, D.J. (1998) Origin and evolution of the greisenizing fluid at the East Kemptville tin deposit, Nova Scotia, Canada. Economic Geology, 93, 10261051.CrossRefGoogle Scholar
Hamilton, D.L. and Henderson, C.M.B. (1968) The preparation of silicate compositions by a gelling method. Mineralogical Magazine, 36, 832838.CrossRefGoogle Scholar
Hampar, M.S. and Zussman, J. (1984) The thermal breakdown of topaz. TMPM Tschermaks Mineralogische und Petrographische Mitteilungen, 33, 235252.CrossRefGoogle Scholar
Holm, J.L. and Kleppa, O.J. (1966) The thermodynamic properties of the aluminum silicates. American Mineralogist, 51, 16081622.Google Scholar
Huang, W.-L. and Wyllie, P.J. (1986) Phase relationships of gabbro-tonalite-granite-water at 15 kb with applications to differentiation and anatexis. American Mineralogist, 71, 301316.Google Scholar
Jago, B.C. and Gittins, J. (1989) Silver fluoride (AgF) as a source of fluorine in experimental petrology. American Mineralogist, 74, 936937.Google Scholar
Joyce, D.B. and Voigt, D.E. (1994) A phase study in the system KAlSi3O8-NaAlSi3O8-SiO2-Al2SiO5-H2O and petrogenetic implications. American Mineralogist, 79, 504512.Google Scholar
Lukkari, S. and Holtz, F. (2007) Phase relations of F-enriched peraluminous granite; an experimental study of the Kymi topaz granite stock, Southern Finland. Contributions to Mineralogy and Petrology, 153, 273288.CrossRefGoogle Scholar
MacDonald, M.A. (2001) Geology of the South Mountain Batholith, southwestern Nova Scotia. Nova Scotia Department of Natural Resources, Open File Report, ME2001-2.Google Scholar
Manning, D.A.C. and Hill, P.I. (1990) The petrogenetic and metallogenetic significance of topaz granite from the southwest England orefield. Pp. 51—69 in: Ore-Bearing Granite Systems; Petrogenesis and Mineralizing Processes (Stein, H. J. and Hannah, J. L., editors). Special Paper 246, Geological Society of America, Boulder, Colorado. USA.Google Scholar
Pichavant, M. and Manning, D. (1984) Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. Physics of the Earth and Planetary Interiors, 35, 3150.CrossRefGoogle Scholar
Pichavant, M., Kontak, D.J., Herrera, J.V. and Clark, A.H. (1988) The Miocene-Pliocene Macusani volcanics, SE Peru I. Mineralogy and magmatic evolution of a two-mica aluminosilicate-bearing ignimbrite suite. Contributions to Mineralogy and Petrology, 43, 10031028.Google Scholar
Rizkalla, A.S., Jones, D.W., Hall, G.C. and Sutow, E.J. (1991) Composition of feldspathic glass synthesized by sol-gel. British Ceramic Transactions and Journal, 90, 8184.Google Scholar
Webster, J.D., Thomas, R., Rhede, D., Forster, H.-J. and Seltmann, R. (1997) Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine- and phosphorus-rich residual liquids. Geochimica et Cosmochimica Ada, 61, 25892604.CrossRefGoogle Scholar
Webster, J.D., Thomas, R., Forster, H.-J., Seltmann, R. and Tappen, C. (2004) Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. Mineralium Deposita, 39, 452472.CrossRefGoogle Scholar
Weill, D.F. (1966) Stability relations in the Al2O3-SiO2system calculated from solubilities in the A12O3— SiO2-Na3 A1F6 system. Geochimica et Cosmochimica Ada, 30, 223237.CrossRefGoogle Scholar
Wunder, B. and Melzer, S. (2002) Interlayer vacancy characterization of synthetic phlogopitic micas by IR spectroscopy. European Journal of Mineralogy, 14, 11291138.CrossRefGoogle Scholar
Wunder, B., Rubie, D.C., Ross, C.R. II, Medenbach, O., Seifert, F. and Schreyer, W. (1993) Synthesis, stability, and properties of Al2SiO4(OH)2: a fully hydrated analogue of topaz. American Mineralogist, 78, 285297.Google Scholar
Wunder, B., Andrut, M. and Wirth, R. (1999) High-pressure synthesis and properties of OH-rich topaz. European Journal of Mineralogy, 11, 803813.CrossRefGoogle Scholar
Zen, E-An. (1988) Phase relations of peraluminous granitic rocks and their petrogenetic implications. Annual Review of Earth and Planetary Sciences, 16, 2151.CrossRefGoogle Scholar