Published online by Cambridge University Press: 27 April 2020
Arsenopyrite (FeAsS) and realgar (As4S4) are two common arsenic minerals that often cause serious environmental issues. Centralised treatment of arsenic-containing tailings can reduce land occupation and save management costs. The current work examined the remediation schemes of tailings from Hunan Province, China, where by different tailings containing arsenopyrite and realgar were blended with exogenous slag zero valence iron (ZVI). Introducing Fe-oxidising bacteria (Acidithiobacillus ferrooxidans) recreates a biologically oxidative environment. All bioleaching experiments were done over three stages, each for 7 days and the solid phase of all tests was characterised by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy and selective extraction analyses. The results showed that the mixture group reduced arsenic release by 72.9–74.7% compared with the control group. The addition of 0.2 g ZVI clearly decreased arsenic release, and the addition of 4.0 g ZVI led to the lowest arsenic release among all tests. The decrease of arsenic released from the tailings was due to the adsorption and uptake of arsenic by secondary iron-containing minerals and Fe–As(V) secondary mineralisation. The addition of large amounts of ZVI reduced the arsenic detected in the amorphous Fe precipitates. Therefore, a low cost and integrated strategy to reduce arsenic release from tailings is to mix two typical tailings and apply exogenous slag ZVI, which can apply to the in situ remediation of two kinds or more arsenic-containing tailings.
Associate Editor: Runliang Zhu
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.