Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-17T18:16:54.866Z Has data issue: false hasContentIssue false

Unusually Y-rich monazite-(Ce) with 6–14 wt.% Y2O3 in a granulite from the Bohemian Massif: implications for high-temperature monazite growth from the monazite-xenotime miscibility gap thermometry

Published online by Cambridge University Press:  05 July 2018

E. Krenn*
Affiliation:
Department of Materials Engineering and Physics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
F. Finger
Affiliation:
Department of Materials Engineering and Physics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria

Abstract

Accessory monazite-(Ce) with an extraordinarily high proportion of the xenotime component in solid solution of 21–42 mol.% (6.5–14 wt.% Y2O3, 6–11 wt.% HREE2O3) was discovered in a retrogressed Variscan high-pressure, high-temperature granulite from the southern Bohemian Massif, Austria. The grains with the highest proportion of xenotime (XXno ~0.4) should have had a minimum formation temperature of ~1050°C, according to published monazite-xenotime miscibility gap thermometers. This high temperature is consistent with previous petrological studies on the south Bohemian granulites indicating ~1000°C/16 kbar for the peak metamorphic stage.

Type
Letter
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cooke, R.A. (2000) High pressure/temperature metamorphism in the St. Leonhard Granulite Massif, Austria: Evidence from intermediate pyroxene-bearing granulites. International Journal of Earth Science, 89, 631651.CrossRefGoogle Scholar
Finger, F., Gerdes, A., Janoušek, V., René, M. and Riegler, G. (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. Journal of Geosciences, 52, 928.Google Scholar
Franke, W. (2000) The middle-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Pp. 3561 in: Orogenic Processes: Quantification and Modelling in the Variscan belt (Franke, W., Haak, V., Oncken, O. and Tanner, D., editors). Special Publications, 179, The Geological Society, London.Google Scholar
Franz, G., Andrehs, G. and Rhede, D. (1996) Crystal chemistry of monazite and xenotime from Saxothuringian-Moldanubian metapelites, NE Bavaria, Germany. European Journal of Mineralogy, 8, 10971108.CrossRefGoogle Scholar
Fuchs, G. (1976) Zur Entwicklung der Böhmischen Masse. Jahrbuch der Geologischen Bundesanstalt, 129, 4149.Google Scholar
Fuchs, W. and Grill, R. (1984) Geologische Karte von Wien und Umgebung (1:200.000). Geologische Bundesanstalt, Wien.Google Scholar
Gratz, R. and Heinrich, W. (1997) Monazite-xenotime thermobarometry: experimental calibration of the miscibility gap in the binary system CePO4-YPO4 . American Mineralogist, 82, 772780.CrossRefGoogle Scholar
Grew, E.S., Yates, M.G. and Wilson, C.J.L. (2008) Aureoles of Pb(II)-enriched feldspar around monazite in paragneiss and anatectic pods of the Napier Complex, Enderby Land, East Antarctica: The roles of dissolution-reprecipitation and diffusion. Contributions to Mineralogy and Petrology, 155, 363378.CrossRefGoogle Scholar
Grew, E.S., Marsh, J.H., Yates, M.G., Lazic, B., Armbruster, T., Locock, A., Bernhardt, H-J. and Medenbach, O. (2009 a) A new yttrium garnet species, {(Y,REE)(Ca,Fe2+)2}[(Mg,Fe2+)(Fe3+,Al)] (Si3)O12, and two new components in metamorphic garnet: {Y2Ca}[Mg2](Si3)O12 and {Y2Ca} [Fe2 2+] (Si3)O12 . Geological Society of America, Abstracts with Programs, 41(7), 358.Google Scholar
Grew, E.S., Marsh, J.H., Yates, M.G. and Locock, A. (2009 b) A new garnet, {(Y,REE)(Ca,Fe2+)2} [(Mg,Fe2+)(Fe3+,Al)](Si3)O12, and its role in the yttrium and rare-earth element budget in a granulite. Eos Transactions AGU, 90(52), Fall Meeting Supplement, Abstract V43E-2322.Google Scholar
Harlov, D.E. and Förster, H.J. (2002) High-grade fluid-metasomatism on both a local and regional scale: the seaward Peninsula, Alaska, and the Val Strona di Omega, Ivrea–Verbano Zone, Northern Italy. Part II: phosphate mineral chemistry. Journal of Petrology, 43, 769799.CrossRefGoogle Scholar
Heinrich, W., Andrehs, G. and Franz, G. (1997) Monazite-xenotime miscibility gap thermometry. I. An empirical calibration. Journal of Metamorphic Geology, 15, 316.CrossRefGoogle Scholar
Janoušek, V., Finger, F., Roberts, M.P., Fryda, J., Pin, C. and Dolejs, D. (2004) Deciphering petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Transactions of the Royal Society of Edinburgh, 95, 141159.CrossRefGoogle Scholar
Kamineni, D.C., Rao, A.T. and Bonardi, M. (1991) The geochemistry of monazite types from the Eastern Ghats granulite terrain, India. Mineralogy and Petrology, 45, 119130.CrossRefGoogle Scholar
Kotková, J., Gerdes, A., Parrish, R. and Novák, M. (2007) Clasts of Variscan high-grade rocks within Upper-Visean conglomerates: constraints on exhumation history from petrology and U-Pb chronology. Journal of Metamorphic Geology, 25, 781801.CrossRefGoogle Scholar
Krenn, E. and Finger, F. (2004) Metamorphic formation of Sr-apatite and Sr-bearing monazite in a high pressure rock from the Bohemian Massif. American Mineralogist, 89, 13231329.CrossRefGoogle Scholar
Krenn, E., Ustaszewski, K. and Finger, F. (2008) Detrital and newly formed metamorphic monazite in amphibolite-facies metapelites from the Motajica Massif, Bosnia. Chemical Geology, 254, 164174.CrossRefGoogle Scholar
Krenn, E., Janák, M., Fritz, F., Broska, I. and Konečný, P. (2009) Two types of metamorphic monazite with contrasting La/Nd, Th and Y signature in a (ultra) high pressure metapelite from the Pohorje Mountains, Slovenia: Indications for a pressure-dependent REE exchange between apatite and monazite. American Mineralogist, 94, 801815.CrossRefGoogle Scholar
McFarlane, C.R.M., Connelly, J.N. and Carlson, W.D. (2005) Monazite and xenotime petrogenesis in the contact aureole of the Makhavinekh Lake Pluton, northern Labrador. Contributions to Mineralogy and Petrology, 148, 524541.CrossRefGoogle Scholar
Montel, J.M., Foret, S., Veschambre, M., Nicollet, Ch. and Provost, A. (1996) A fast, reliable, inexpensive in-situ dating technique: electron microprobe ages on monazite. Chemical Geology, 131, 3753.CrossRefGoogle Scholar
O'Brien, P.J. (2000) The fundamental Variscan problem: high-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures. Pp. 369386 in: Orogenic Processes: Quantification and Modelling in the Variscan Belt (Franke, W., Haak, V., Oncken, O. and Tanner, D., editors). Special Publications, 179, The Geological Society, London.Google Scholar
O'Brien, P.J. and Carswell, D.A. (1993) The tectono-metamorphic evolution of the Bohemian Massif: Evidence from high pressure metamorphic rocks. Geologische Rundschau, 82, 531555.CrossRefGoogle Scholar
Pyle, J.M. and Spear, F.S. (2000) An empirical garnet (YAG)–xenotime thermometer. Contributions to Mineralogy and Petrology, 138, 5158.CrossRefGoogle Scholar
Pyle, J.M., Spear, F.S., Rudnick, R.L. and McDonough, W.F. (2001) Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. Journal of Petrology, 42, 20832107.CrossRefGoogle Scholar
Scharbert, S. (1971) Berichte über Aufnahmen auf Blatt Groβsiegharts (7) in den Jahren 1969 und 1970. Verhandlungen der Geologischen Bundesanstalt, Wien 1970 und 1971.Google Scholar
Schenk, V. and Todt, W. (1983) U-Pb Datierungen an Zirkon und Monazit der Granulite im Moldanubikum Niederösterreichs (Waldviertel). Fortschritte der Mineralogie, Beiheft, 61, 190191.Google Scholar
Seydoux-Guillaume, A-M., Wirth, R., Heinrich, W. and Montel, J.M. (2002) Experimental determination of Thorium partitioning between monazite and xenotime using analytical electron microscopy and X-ray diffraction Rietveld analysis. European Journal of Mineralogy, 14, 869878.CrossRefGoogle Scholar
Spear, F.S. and Pyle, J.M. (2002) Apatite, monazite, and xenotime in metamorphic rocks. Pp. 293335 in: Phosphates - Geochemical, Geobiological, and Materials Importance (Kohn, M.L., Rakovan, J. and Hughes, J.M., editors). Reviews in Mineralogy and Geochemistry, 48, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
van Breemen, O., Aftalion, M., Bowes, D.R., Dudek, A., Mísaø, Z., Povondra, P. and Vrána, S. (1982) Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe. Transactions of the Royal Society of Edinburgh – Earth Science, 73, 89108.CrossRefGoogle Scholar
Vrána, S. and Novák, M. (2000) Petrology and geochemistry of granulite clasts in the Visean Luleč conglomerate, Kulm in central Moravia, Czech Republic. Bulletin of the Czech Geological Survey, 75, 405413.Google Scholar
Wagner, R. (2010) Petrologische Untersuchungen an metasedimentären Granuliten der Böhmischen Masse unter besonderer Berücksichtigung des Monazits. Bachelor-Thesis, University of Salzburg, Austria, 34 pp.Google Scholar