Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-01T14:45:31.427Z Has data issue: false hasContentIssue false

Controlling donor crystallinity and phase separation in bulk heterojunction solar cells by the introduction of orthogonal solvent additives

Published online by Cambridge University Press:  08 May 2018

Shahidul Alam*
Affiliation:
Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstrasse 10, 07743 Jena, Germany Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
Rico Meitzner
Affiliation:
Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstrasse 10, 07743 Jena, Germany Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
Christian Kaestner
Affiliation:
Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, Am Helmholtzring 1, 98693 Ilmenau, Germany
Christoph Ulbricht
Affiliation:
Institute of Polymeric Materials and Testing, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria
Stephanie Hoeppener
Affiliation:
Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstrasse 10, 07743 Jena, Germany Jena Centre for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7, 07743 Jena, Germany
Daniel A.M. Egbe
Affiliation:
Institute of Polymeric Materials and Testing, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria
Ulrich S. Schubert
Affiliation:
Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstrasse 10, 07743 Jena, Germany Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
Harald Hoppe
Affiliation:
Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstrasse 10, 07743 Jena, Germany Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
*
*Corresponding Author: Shahidul Alam, E-mail: shahidul.alam@uni-jena.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The bulk heterojunction morphology of organic solar cells widely controls their device efficiency and stability. Structural order and domain size of the donor phase strongly impact the charge separation efficiency, recombination rates, and the hole percolation through the bulk to the electrode. Herewith, we report a comprehensive study on the control of polymeric order already initiated in solution by the introduction of orthogonal solvent additives to the common solution of anthracene containing poly(p-phenylene-ethynylene)-alt-poly(p-phenylene-vinylene) (PPE-PPV) copolymer, bearing statistically substituted linear octyloxy and 2-ethylhexyloxy side-chains in 1:1 ratio along the backbone (AnE-PVstat), and fullerene derivative phenyl-C61-butyric acid methyl ester (PCBM). The first solvent, a 1:1 blend of chlorobenzene and chloroform, had been discovered to promote phase separation in solution and deposited films. This effect could be further enhanced and was precisely controlled by addition of methanol to the common solution in various volume fractions. Thus the ability to transfer the polymer aggregates from the solution into films was applied to solar cells and is investigated in detail.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

References

REFERENCES

Shaheen, S. E., Ginley, D. S., and Jabbour, G. E., MRS Bulletin 30, 10 (2005).Google Scholar
Ahlswede, E. et al., Applied Physics Letters 92, 143307 (2008).CrossRefGoogle Scholar
Na, S.-I. et al., Solar Energy Materials and Solar Cells 94, 1333 (2010).Google Scholar
Larsen-Olsen, T. T. et al., Advanced Energy Materials 2, 1091 (2012).Google Scholar
Krebs, F. C. et al., Solar Energy Materials and Solar Cells 93, 422 (2009).Google Scholar
Ng, G. M. et al., Applied Physics Letters 90 (2007).Google Scholar
Han, D. et al., Optics Express 18, A513 (2010).Google Scholar
www.oled-info.com/, (Access 13th December 2017).Google Scholar
Green, M. A. et al., Progress in Photovoltaics: Research and Applications 25, 3 (2017).Google Scholar
Sariciftci, N. S. et al., Synthetic Metals 59, 333 (1993).Google Scholar
Yu, G. et al., Science 270, 1789 (1995).Google Scholar
Sariciftci, N. S. et al., Science 258, 1474 (1992).Google Scholar
Kraabel, B. et al., Chemical Physics Letters 213, 389 (1993).Google Scholar
Janssen, R. A. J. et al., Journal of Chemical Physics 103, 788 (1995).CrossRefGoogle Scholar
Nielsen, C. B. et al., Accounts of Chemical Research 48, 2803 (2015).CrossRefGoogle Scholar
Wu, J.-S. et al., Chemical Society Reviews 44, 1113 (2015).CrossRefGoogle Scholar
Etxebarria, I., Ajuria, J., and Pacios, R., Organic Electronics 19, 34 (2015).CrossRefGoogle Scholar
Liu, C. et al., Chemical Society Reviews 45, 4825 (2016).CrossRefGoogle Scholar
Jackson, N. E. et al., J. Phys. Chem. Lett. 6, 77 (2015).CrossRefGoogle Scholar
Pivrikas, A. et al., Progress in Photovoltaics: Research and Applications 15, 677 (2007).CrossRefGoogle Scholar
Dang, M. T. et al., Chemical Reviews 113, 3734 (2013).Google Scholar
Singh, C. R. et al., Journal of Polymer Science Part B: Polymer Physics 51, 943 (2013).Google Scholar
Duong, D. T. et al., Advanced Functional Materials 24, 4515 (2014).Google Scholar
Rathgeber, S. et al., Macromolecules 43, 306 (2010).Google Scholar
Rathgeber, S. et al., Polymer 52, 3819 (2011).Google Scholar
Crossland, E. J. W. et al., Advanced Materials 24, 839 (2012).Google Scholar
Noriega, R. et al., Nat Mater 12, 1038 (2013).Google Scholar
Kastner, C. et al., Proc. SPIE 9184, 91840Z (7 pp.) (2014).Google Scholar
Waldauf, C. et al., Advanced Materials 15, 2084 (2003).Google Scholar
Singh, T. B. et al., Organic Electronics 6, 105 (2005).Google Scholar
Savoie, B. M. et al., J. Am. Chem. Soc. 136, 2876 (2014).Google Scholar
Gélinas, S. et al., Science 343, 512 (2014).Google Scholar
Jamieson, F. C. et al., Chem. Sci. 3, 485 (2012).Google Scholar
Nelson, J., Materials Today 14, 462 (2011).CrossRefGoogle Scholar
Brady, M. A., Su, G. M., and Chabinyc, M. L., Soft Matter 7, 11065 (2011).Google Scholar
Liu, F. et al., Journal of Polymer Science Part B: Polymer Physics 50, 1018 (2012).CrossRefGoogle Scholar
Treat, N. D., and Chabinyc, M. L., in Annual Review of Physical Chemistry, Vol. 65, edited by Johnson, M. A., and Martinez, T. J. (Annual Reviews, Palo Alto, 2014), pp. 59.Google Scholar
Menke, S. M., and Holmes, R. J., Energy & Environmental Science 7, 499 (2014).Google Scholar
Hwang, I.-W., Moses, D., and Heeger, A. J., The Journal of Physical Chemistry C 112, 4350 (2008).Google Scholar
Padinger, F., Rittberger, R. S., and Sariciftci, N. S., Advanced Functional Materials 13, 85 (2003).Google Scholar
Ma, W. et al., Advanced Functional Materials 15, 1617 (2005).Google Scholar
Chen, E.-C. et al., Applied Physics Letters 92, 1 (2008).Google Scholar
Lee, J. K. et al., Journal of the American Chemical Society 130, 3619 (2008).Google Scholar
Yao, Y. et al., Advanced Functional Materials 18, 1783 (2008).Google Scholar
Li, G. et al., Nat Mater 4, 864 (2005).Google Scholar
Kiriy, N. et al., Nano Letters 3, 707 (2003).Google Scholar
Huang, W. Y. et al., Macromolecules 41, 7485 (2008).Google Scholar
Moulé, A. J., and Meerholz, K., Advanced Materials 20, 240 (2008).CrossRefGoogle Scholar
Sun, S. et al., Journal of Materials Chemistry 21, 377 (2011).Google Scholar
Yan, H. et al., The Journal of Physical Chemistry C 115, 3257 (2011).Google Scholar
Egbe, D. A. M. et al., Journal of Materials Chemistry 20, 9726 (2010).Google Scholar
Usluer, Ö. et al., Journal of Polymer Science Part A: Polymer Chemistry 50, 3425 (2012).Google Scholar
Kästner, C. et al., Journal of Polymer Science Part B: Polymer Physics 50, 1562 (2012).Google Scholar
Kastner, C., Egbe, D. A. M., and Hoppe, H., Journal of Materials Chemistry A 3, 395 (2015).Google Scholar
Kastner, C. et al., Journal of Polymer Science Part B-Polymer Physics 51, 868 (2013).Google Scholar
Murgatroyd, P. N., Journal of Physics D: Applied Physics 3, 151 (1970).CrossRefGoogle Scholar
Mihailetchi, V. D. et al., Advanced Functional Materials 13, 43 (2003).Google Scholar
Hoppe, H. et al., Adv. Funct. Mater. 14, 1005 (2004).CrossRefGoogle Scholar
Hoppe, H. et al., Mol. Cryst. Liquid Cryst. 426, 255 (2005).Google Scholar
Hoppe, H., and Sariciftci, N. S., J. Mater. Chem. 16, 45 (2006).Google Scholar
Kastner, C. et al., Journal of Materials Chemistry 22, 15987 (2012).CrossRefGoogle Scholar
Mangold, H. et al., Physical Chemistry Chemical Physics 16, 20329 (2014).Google Scholar
Engmann, S. et al., Synthetic Metals 161, 2540 (2012).Google Scholar
Kästner, C. et al., Advanced Science 4, 1600331, 1600331 (2017).Google Scholar
Kästner, C. et al., 2014), pp. 91840Z.Google Scholar
Synooka, O. et al., Adv. Energy Mater. 4, 10 (2014).CrossRefGoogle Scholar