Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-01T04:08:06.175Z Has data issue: false hasContentIssue false

LED-Assisted Degradation of Aromatic Organics Using Cu2O Photocatalysts

Published online by Cambridge University Press:  05 May 2017

Yang Su*
Affiliation:
Electrical Division, Department of Engineering, University of Cambridge, U.K.
Hanbin Ma
Affiliation:
Electrical Division, Department of Engineering, University of Cambridge, U.K.
Arokia Nathan
Affiliation:
Electrical Division, Department of Engineering, University of Cambridge, U.K.
*
*(Email: ys423@cam.ac.uk)
Get access

Abstract

In this work, we successfully synthesized rhombic dodecahedral Cu2O nanocrystals with a size of 300 – 400 nm using a facile hydrothermal method. The as-prepared photocatalyst with narrow bandgap is activated using low power visible LED light sources and shows high efficiency in degrading aromatic organic compounds including toluene and chlorobenzene. The OH substitution leads to oxidation/ionization potential drops while the nature of the p-type Cu2O contributes to an effective single electron transfer reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, J., Cushing, S. K., Bright, J., Meng, F., Senty, T. R., Zheng, P., Bristow, A. D. and Wu, N., ACS Catal., 3, 4751 (2013).CrossRefGoogle Scholar
Ghosh, S., Kouamé, N. a, Ramos, L., Remita, S., Dazzi, A., Deniset-Besseau, A., Beaunier, P., Goubard, F., Aubert, P.-H. and Remita, H., Nat. Mater., 14, 505–11 (2015).CrossRefGoogle Scholar
Zhu, L., Hong, M. and Wei Ho, G., Sci. Rep., 5, 11609 (2015).CrossRefGoogle Scholar
Kuo, C. H., Chen, C. H. and Huang, M. H., Adv. Funct. Mater., 17, 37733780 (2007).CrossRefGoogle Scholar
Liang, X., Gao, L., Yang, S. and Sun, J., Adv. Mater., 21, 20682071 (2009).CrossRefGoogle Scholar
Chen, K. and Xue, D., CrystEngComm, 80688075 (2012).CrossRefGoogle Scholar
Sun, S., Nanoscale, 7, 1085010882 (2015).CrossRefGoogle Scholar
Huang, W. C., Lyu, L. M., Yang, Y. C. and Huang, M. H., J. Am. Chem. Soc., 134, 12611267 (2012).CrossRefGoogle Scholar
Zhang, Z., Shao, C., Li, X., Wang, C., Zhang, M. and Liu, Y., ACS Appl. Mater. Interfaces, 2, 29152923 (2010).CrossRefGoogle Scholar
Jiang, H. Q., Endo, H., Natori, H., Nagai, M. and Kobayashi, K., Mater. Res. Bull., 44, 700706 (2009).CrossRefGoogle Scholar
Liu, Z. L., Deng, J. C., Deng, J. J. and Li, F. F., Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 150, 99104 (2008).CrossRefGoogle Scholar
Minero, J. C., Pelizzetu, E., Malato, S. and Blanco, , Sol. energy, 56, 421428 (1996).CrossRefGoogle Scholar
Li, X., Cubbage, J. W., Tetzlaff, T. a. and Jenks, W. S., J. Org. Chem., 64, 85098524 (1999).CrossRefGoogle Scholar
Su, Y., Nathan, A., Ma, H. and Wang, H., RSC Adv., 6, 7818178186 (2016).CrossRefGoogle Scholar