Published online by Cambridge University Press: 28 January 2019
The current work focuses on optimizing aptamer scaffolds that are tailored to allow for the formation of binding pockets for both a redox active signaling molecule and the target miR-92a. These newly designed allosteric nucleic acid systems are studied for efficacy to undergo a target based conformational switch. Two hairpin scaffolds were designed with differing stem stabilities and were explored using fluorescence quenching measurements. The dose dependent data for the detection of miR-92a shows the importance of scaffold design where the stability of the intra-molecular hairpin structure has to be optimized for target binding. Additional experiments explored the selectivity of the aptamer scaffolds in the presence of competing miR’s and mismatched sequences. These results provide an important precursor to constructing nucleic acid scaffolds for the detection of miR’s using label-free redox signaling.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.