Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-02T10:41:09.431Z Has data issue: false hasContentIssue false

Photocatalytic activity of TiO2 synthesized by anodization and anodic spark deposition

Published online by Cambridge University Press:  06 November 2020

Alma C. Chávez-Mejía*
Affiliation:
Instituto de Ingeniería, Universidad Nacional Autónoma de México Av. Universidad 3000, UNAM CU, Coyoacán, 04510, Mexico
Génesis Villegas-Suárez
Affiliation:
Instituto de Ingeniería, Universidad Nacional Autónoma de México Av. Universidad 3000, UNAM CU, Coyoacán, 04510, Mexico
Paloma I. Zaragoza-Sánchez
Affiliation:
Instituto de Ingeniería, Universidad Nacional Autónoma de México Av. Universidad 3000, UNAM CU, Coyoacán, 04510, Mexico
Rafael Magaña-López
Affiliation:
Instituto de Ingeniería, Universidad Nacional Autónoma de México Av. Universidad 3000, UNAM CU, Coyoacán, 04510, Mexico
Julio C. Morales-Mejía
Affiliation:
Facultad de Estudios Superiores Cuautitlán (UNAM). Av. 1° de mayo s/n, Santa María las Torres, Cuautitlán Izcalli, 54760, Mexico
Blanca E. Jiménez-Cisneros
Affiliation:
Instituto de Ingeniería, Universidad Nacional Autónoma de México Av. Universidad 3000, UNAM CU, Coyoacán, 04510, Mexico
*
*Corresponding author: achavezm@iingen.unam.mx
Get access

Abstract

Several photocatalysts, based on titanium dioxide, were synthesized by spark anodization techniques and anodic spark oxidation. Photocatalytic activity was determined by methylene blue oxidation and the catalytic activities of the catalysts were evaluated after 70 hours of reaction. Scanning Electron Microscopy and X Ray Diffraction analysis were used to characterize the catalysts. The photocatalyst prepared with a solution of sulfuric acid and 100 V presented the best performance in terms of oxidation of the dye (62%). The electric potential during the synthesis (10 V, low potential; 100 V, high potential) affected the surface characteristics: under low potential, catalyst presented smooth and homogeneous surfaces with spots (high TiO2 concentration) of amorphous solids; under low potential, catalyst presented porous surfaces with crystalline solids homogeneously distributed.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

CONAGUA and SEMARNAT, “Infraestructura Hidráulica,” Estadísticas del Agua en México, ed. CONAGUA (CONAGUA, 2013) pp. 64-92.Google Scholar
Hamad, H. A., Sadik, W. A., Abd El-latif, M. M., Kashyout, A. B. and Feteha, M. Y., J. Environ. Sci. 43, 26-39 (2016).CrossRefGoogle Scholar
Talaiekhozani, A., Mosayebi, M. R., Fulazzaky, M. A., Eskandari, Z. and Sanayee, R., AEJ 59, 549-563 (2020).Google Scholar
Adam, F., Appaturi, J. M., Khanam, Z., Thankappan, R. and Nawi, A. M., Appl. Surf. Sci. 264, 718-726 (2013).CrossRefGoogle Scholar
Malato, S., Blanco, J., Alarcón, D., Maldonado, M., Fernández-Ibáñez, P. and Gernjak, W., Catal. Today 122, 137-149 (2007).CrossRefGoogle Scholar
Blanco Gálvez, J., Malato Rodríguez, S., Estrada Gasca, C., Bandala, E., Gelover, S. and Leal, T., “Purificación de aguas por fotocatálisis heterogénea: estado del arte,” Eliminación de Contaminantes por Fotocatálisis Heterogénea, ed. Blesa, M. A. (2001) pp. 51-76.Google Scholar
Grela, M., Loeb, B. and Res, G., “Los mecanismos de destrucción de contaminantes orgánicos,” Eliminación de Contaminantes por Fotocatálisis Heterogénea, ed. Blesa, M. A. (2001) pp. 103-119.Google Scholar
Herrmann, J-M, Appl. Catal. B 99, 461468 (2010).CrossRefGoogle Scholar
Herrmann, J-M, J. Photochem. Photobiol. A 216, 8593 (2010).CrossRefGoogle Scholar
Chávez-Mejía, A., Chávez-Velasco, A., Zaragoza-Sánchez, P. and Jiménez-Cisneros, B. in Photo-Oxidation Treatment of the Reject Stream of a Nanofiltration Membrane System, edited by Maciel-Cerda, A., (Membranes: Materials, simulations, and Applications, Cham, Switzerland, 2017) pp. 105-111.Google Scholar
Liu, J., Zhang, C., Ma, B., Yang, T., Gu, X., Wang, X., Zhang, J. and Hu, C., Nano Energy 38, 271-280 (2017).CrossRefGoogle Scholar
Li, Q. and Li, F., Adv Colloid Interface Sci. 284, 102275 (2020).CrossRefGoogle Scholar
Kyung-Jun, H., Jae-Wook, L., Wang-Geun, S., Hee Dong, J., See-Il, L., and Seung-Joon, Y., Adv. Powder Technol. 23, 414-418 (2012).Google Scholar
Gómez, C., Juárez, I., Moctezuma, E. and Torres, L., J. Hazar. Mat. 217-218, 194-199 (2012).CrossRefGoogle Scholar
Morales-Mejía, J., Ángeles, L. and Almanza, R., J. Adv. Oxid. Technol. 16 , 2, 224-233 (2013).Google Scholar
Zainal, Z., Kong Hui, L., Zobir Huss, M., Hin Taufiq-Yap, Y., Halim Abdullah, A. and Ramli, I., J. Hazard. Mater. B125, 113120 (2005).CrossRefGoogle Scholar
Diamanti, M., Ormellese, M., Marín, E., Mele, A. and Pedeferri, M., J. Hazar. Mater. 186, 2103-2109 (2011).CrossRefGoogle Scholar
Brunella, M. F., Diamanti, M. V., Pedeferri, M. P., Di Fonzo, F., Casari, C. S. and Li Bassi, A., Thin Solid Films 515, 6309-6313 (2007).CrossRefGoogle Scholar
Mizukoshi, Y., Ohtsu, N. and Masahashi, , Appl. Surf. Sci. 283, 1018-1023 (2013).CrossRefGoogle Scholar
Diamanti, M. V., Spreafico, F. C. and Pedeferri, M. P., Phys. Procedia 40, 30-37 (2013).CrossRefGoogle Scholar
Chávez-Mejía, A. C., Zaragoza-Sánchez, P. I., Magaña-López, R., Barrera-Díaz, C. E. and Jiménez-Cisneros, B. E., J. Mater. Sci: Mater. Electron. 31 , 18, 15907-15918 (2020).Google Scholar
Wang, Q., Yang, X., Wang, X., Huang, M. and Hou, J., Electrochim. Acta 62, 158-162 (2012).CrossRefGoogle Scholar
Siva Jyothi, N. and Ravichandran, K., Ceram. Int. 46, 23289-23292 (2020).CrossRefGoogle Scholar
Hwang, K-H., Lee, W., Shim, W., Jang, D., Lee, S. and Yoo, S., Adv. Powder Technol. 23, 414-418 (2012).CrossRefGoogle Scholar
Marbán, G., J. Colloid Interface Sci. 467, 170-179 (2016).CrossRefGoogle Scholar
Malato, S., Ibañez, P., Maldonado, M., Blanco, J. and Gernjak, W., Catal. Today 147, 1-59 (2009).CrossRefGoogle Scholar
Hernández, J. M., García, L. A., García, R., Cueto, A. and Carmona, J. A., ACI 3, 2, 25-34 (2012).Google Scholar
Dikici, T., Erol, M., Toparli, M. and Celik, E., Ceram. Int. 40, 1587-1591 (2014).CrossRefGoogle Scholar
Diamanti, M. and Pedeferri, M., Corros. Sci. 49, 939-948 (2007).CrossRefGoogle Scholar
Anandan, S., Pugazhenthiran, N., Lana, T., Lee, G. and Wu, J., Chem. Eng. J. 231, 182-189 (2013).CrossRefGoogle Scholar
Prasai, B., Underwood, M., Lewis, J. and Drabold, D., J. Mater. Sci. 1-17 (2012).Google Scholar