Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-01T04:49:24.038Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Hydroxyapatite for Mercury Removal in Polluted Waters

Published online by Cambridge University Press:  14 January 2020

Miguel José Álvarez Velásquez*
Affiliation:
Universidad Nacional de Colombia, Facultad de Ingeniería, Av. Carrera 30 # 45-03, Bogotá D.C., Colombia
Valentina Martínez Cortes
Affiliation:
Universidad Nacional de Colombia, Facultad de Ingeniería, Av. Carrera 30 # 45-03, Bogotá D.C., Colombia
Lina Paola Guarín Alfaro
Affiliation:
Universidad Nacional de Colombia, Facultad de Ingeniería, Av. Carrera 30 # 45-03, Bogotá D.C., Colombia
Alejandro Figueroa Jaramillo
Affiliation:
Universidad Nacional de Colombia, Facultad de Ingeniería, Av. Carrera 30 # 45-03, Bogotá D.C., Colombia
Yesmith Santos Panqueva
Affiliation:
Universidad Nacional de Colombia, Facultad de Ciencias, Av. Carrera 30 # 45-03, Bogotá D.C., Colombia
Ana Esperanza Burgos
Affiliation:
Universidad Nacional de Colombia, Facultad de Ciencias, Av. Carrera 30 # 45-03, Bogotá D.C., Colombia
Get access

Abstract

According to the UNEP, mercury pollution is one of the main contamination problems of the world. The UN showed that more than 1,870 tons of this metal are released into the environment annually. This material arrives to water bodies where fish consume it and then reaches humans, producing negative effects on their health. The hydroxyapatite is one of the main components of bones and has proven itself to be useful in the removal of mercury from polluted sources. The aim of this research project is to synthesize and characterize different formulations of this substance and to determine which is the best selective formulation to remove mercury in water. Currently, twenty-one formulations have been produced. The experimental variables examined are the pH, the temperature and the time of calcination. These variables are characterized with Infrared Spectrophotometry (IR), Scanning Electron Microscope (SEM) and X-ray diffraction (XRD). Before calcination the samples contained 70% of hydroxyapatite. This concentration increased in some of them after calcination. The analysis of the results allowed to test the efficiency of these formulations at removing mercury from water. These materials will also be combined, in future stages of the research, with other substances such as activated carbon and organic fibers to improve their performance. The material will be used to coat a filter so that it can become a piping accessory to remove mercury from polluted waters as it is being recirculated.

Type
Articles
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

World Health Organization: Mercury and Health (2017). Available at: https://www.who.int/news-room/fact-sheets/detail/mercury-and-health. (accessed 25 March 2019)Google Scholar
United Nations Environment Programme: Global mercury assessment. (2013) Available at: https://www.unenvironment.org/explore-topics/chemicals-waste/what-we-do/mercury/global-mercury-assessment (accessed 1st March 2019)Google Scholar
Blacksmith Institute: Fact Sheet: The Toxic Toll of Mercury - Facts, Figures and the Future of "Dancing Cat Fever" Disease (2013). Available at: https://www.pureearth.org/blog/the-toxic-toll-of-mercury-facts-figures-and-the-future-of-dancing-cat-fever-disease/ (accessed 22 July 2019)Google Scholar
United Nations Environment Programme: History of the Negotiations Process - Minamata Convention on Mercury (2016). Available at: http://www.mercuryconvention.org/Convention/History/tabid/3798/language/en-US/Default.aspx (accessed 19 August 2019)Google Scholar
United States Environmental Protection Agency: 2018 Edition of the Drinking Water Standards and Health Advisories Tables (2018). Available at: https://www.epa.gov/sites/production/files/2018-03/documents/dwtable2018.pdf (accessed on 25 august 2019)Google Scholar
Ambiente, Ministerio de, Territorial, Vivienda y Desarrollo: Resolución Número 2115 (2007). Available at: http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/normativa/Res_2115_de_2007.pdf (accessed on 26 august 2019)Google Scholar
Mendes de Souza, Loyane: ESTUDO DA SORÇÃO DE MERCÚRIO EM HIDROXIAPATITA (2015). Available at: http://portal.peq.coppe.ufrj.br/index.php/producao-academica/dissertacoes-de-mestrado/2015/13-estudo-da-sorcao-de-mercurio-em-hidroxiapatita/file (accessed on 23 April 2019)Google Scholar
Walser III, Joe & Kristjánsdóttir, Steinunn & Gowland, Rebecca & Desnica, Natasa: Volcanoes, medicine and monasticism: Investigating mercury exposure in medieval Iceland. (2018) Available at: https://onlinelibrary.wiley.com/doi/epdf/10.1002/oa.2712 (accessed on 25 August 2019)Google Scholar
Granito, Renata Neves, Muniz Renno, Ana Claudia, Yamamura, Hirochi, Cruz de Almeida, Matheus, Menin Ruiz, Pedro Luiz, Ribeiro, Daniel Araki: Hydroxyapatite from Fish for Bone Tissue Engineering: A Promising Approach (2018). Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148500/ (accessed on 25 August 2019)Google Scholar
Cunha, S. M.; Lazar, D. R. R.; Ussui, V.; Fancio, E.; de Lima, N. B.; Bressiani, A. H. A.: INFLUÊNCIA DA RELAÇÃO Ca/P NA FORMAÇÃO DE FOSFATOS DE CÁLCIO SINTETIZADOS POR PRECIPITAÇÃO HOMOGÊNEA (2016). Available at: https://www.ipen.br/biblioteca/2006/cbecimat/12524.pdf (accessed on 24 July 2019)Google Scholar
Burgos, A.E., Belchior, J.C., Sinisterra, R.D.. Elsevier, Biomaterials 2-5, 2519-2526 (2001).Google Scholar
Koutsopoulos, S. Journal of Biomedical Materials Research, 62(4), 600612. (2002)CrossRefGoogle Scholar
Oberbek, P., Bolek, T., Chlanda, A., Hirano, S., Kusnieruk, S., Rogowska-Tylman, J., … Puzyn, T. Beilstein Journal of Nanotechnology, 9, 30793094. (2018)10.3762/bjnano.9.286CrossRefGoogle Scholar
Liu, Yingkai, Hou, Dedong, Wang, Guanghou. Materials Chemistry and Physics 86 6973 (2004)10.1016/j.matchemphys.2004.02.009CrossRefGoogle Scholar