Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-01T16:16:37.240Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Laser Induced Graphene (LIG) and laser Reduced Graphene Oxide (lrGO) by using a pulsed CO2 laser

Published online by Cambridge University Press:  23 December 2019

Juan P. Aguilar Gonzalez*
Affiliation:
Instituto Politécnico Nacional - IPN, Department of Physics, ESFM-IPN, Mexico.
Ramón Gómez Aguilar
Affiliation:
Instituto Politécnico Nacional - IPN, Ciencias Básicas, UPIITA-IPN, Mexico.
Jaime Ortiz López
Affiliation:
Instituto Politécnico Nacional - IPN, Department of Physics, ESFM-IPN, Mexico.
Get access

Abstract

We detail a method to produce graphite materials with a three-dimensional, flexible and porous structure obtained from the exposure to CO2 laser radiation. One of them is Laser Induced Graphene (LIG) grown from an insulating polyimide as raw material, and the other is laser reduced graphene oxide (lrGO), obtained from a graphene oxide (GO) thin film. For both materials, we describe their morphology, crystalline structure and electrical characterizations. These materials have important applications in organic electronics technology.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Geim, A. K.. Graphene: Status and prospects. Science, 324(5934):1530-1534, 2009CrossRefGoogle ScholarPubMed
Lin, Jian, Peng, Zhiwei, Liu, Yuanyue, Ruiz-Zepeda, Francisco, Ye, Ruquan, Errol, L. Samuel, G., Yacaman, Miguel J., Yakobson, Boris I., and Tour, James M.. Laser-induced porous graphene films from commercial polymers. Nature Communications, 2014, 5:5714.CrossRefGoogle ScholarPubMed
Ye, Ruquan, James, Dustin K., and Tour, James M., Laser-Induced Graphene, Acc. Chem. Res. 2018, 51, 16091620CrossRefGoogle ScholarPubMed
Wang, Fangcheng, Wang, Kedian, Zheng, Buxiang, Xia, Dong, Mei, Xuesong, Lv, Jing, Duan, Wenqiang and Wang, Wenjun, Laser-induced graphene: preparation, functionalization and applications, Materials Technology, DOI: https://doi.org/10.1080/10667857.2018.1447265Google Scholar
Huang, Lei, Liu, Yang, Ji, Le-Chun, Xie, Yi-Qun, Wang, Tao, Shi, Wang-Zhou, Pulsed laser assisted reduction of graphene oxide, Carbon 49 (2011) 24312436.CrossRefGoogle Scholar
El-Kady, Maher F., Strong, Veronica, Dubin, Sergey, Kaner, Richard B., Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors, Science 2012, 335, 1326-1330.CrossRefGoogle ScholarPubMed
Bhattacharjya, Dhrubajyoti, et al. "Fast and controllable reduction of graphene oxide by low-cost CO2 laser for supercapacitor application." Applied Surface Science 462, 353-361 (2018).CrossRefGoogle Scholar
Gao, W., Singh, N., Song, L. et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films, Nature Nanotech 6, 496500 (2011).CrossRefGoogle ScholarPubMed
Grimm, Stefan, Schweiger, Manuel, Eigler, Siegfried, and Zaumseil, Jana, High-Quality Reduced Graphene Oxide by CVD-Assisted Annealing, J. Phys. Chem. C 2016, 120, 30363041.CrossRefGoogle Scholar
ID-nano. http://www.id-nano.com.mx (Accessed 18 December 2019)Google Scholar
Tyagi, H., Agarwal, A.K., Chakraborty, P.R., and Powar, S.. Applications of Solar Energy. Energy, Environment, and Sustainability. Springer Singapore, 2017.Google Scholar
Universal Laser Systems. http://www.ulsinc.com/en/products/platforms/vls2-30 (Accessed 18 December 2019)Google Scholar
Suryanarayana, C. and Norton, M.G.. X-Ray Diffraction: A Practical Approach. Artech House Telecommunications. Springer US, 1998.CrossRefGoogle Scholar
Vargas Astudillo, Daniela Rocío. Síntesis de óxido de grafeno reducido y aminado químicamente y su influencia en las propiedades eléctricas y mecánicas de nanocompósitos a base de caucho natural. Facultad de Ciencias Químicas y Farmacéuticas.Google Scholar
Warren, B. E.. X-ray diffraction in random layer lattices. Phys. Rev., 59:693-698, May 1941.CrossRefGoogle Scholar
Pimenta, M. A. et al. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 12761291 (2007).CrossRefGoogle ScholarPubMed