Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-02T10:22:47.360Z Has data issue: false hasContentIssue false

Piezoelectric bioMEMS cantilever for measurement of muscle contraction and for actuation of mechanosensitive cells

Published online by Cambridge University Press:  27 September 2019

Elizabeth A. Coln
Affiliation:
Hybrid Systems Laboratory, University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL32826, USA Department of Electrical & Computer Engineering, University of Central Florida, 4328 Scorpius St., Orlando, FL32816, USA
Alisha Colon
Affiliation:
Hybrid Systems Laboratory, University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL32826, USA
Christopher J. Long
Affiliation:
Hesperos, Inc., 3259 Progress Drive #158, Orlando, FL32826, USA
Narasimhan Narasimhan Sriram
Affiliation:
Hesperos, Inc., 3259 Progress Drive #158, Orlando, FL32826, USA
Mandy Esch
Affiliation:
Department of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY14853, USA
Jean-Matthieu Prot
Affiliation:
Department of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY14853, USA
Daniel H. Elbrecht
Affiliation:
Hybrid Systems Laboratory, University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL32826, USA
Ying Wang
Affiliation:
Department of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY14853, USA
Max Jackson
Affiliation:
Hesperos, Inc., 3259 Progress Drive #158, Orlando, FL32826, USA
Michael L. Shuler
Affiliation:
Hesperos, Inc., 3259 Progress Drive #158, Orlando, FL32826, USA Department of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY14853, USA
James J. Hickman*
Affiliation:
Hybrid Systems Laboratory, University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL32826, USA Department of Electrical & Computer Engineering, University of Central Florida, 4328 Scorpius St., Orlando, FL32816, USA Hesperos, Inc., 3259 Progress Drive #158, Orlando, FL32826, USA
*
Address all correspondence to James J. Hickman at jhickman@ucf.edu
Get access

Abstract

A piezoelectric biomedical microelectromechanical system (bioMEMS) cantilever device was designed and fabricated to act as either a sensing element for muscle tissue contraction or as an actuator to apply mechanical force to cells. The sensing ability of the piezoelectric cantilevers was shown by monitoring the electrical signal generated from the piezoelectric aluminum nitride in response to the contraction of iPSC-derived cardiomyocytes cultured on the piezoelectric cantilevers. Actuation was demonstrated by applying electrical pulses to the piezoelectric cantilever and observing bending via an optical detection method. This piezoelectric cantilever device was designed to be incorporated into body-on-a-chip systems.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fritz, J.. Cantilever biosensors. Analyst 133, 855 (2008).CrossRefGoogle ScholarPubMed
2.Oleaga, C., Bernabini, C., Smith, A.S.T., Srinivasan, B., Jackson, M., McLamb, W., Platt, V., Bridges, R., Cai, Y., Santhanam, N., Berry, B., Najjar, S., Akanda, N., Guo, X., Martin, C., Ekman, G., Esch, M.B., Langer, J., Ouedraogo, G., Cotovio, J., Breton, L., Shuler, M.L., and Hickman, J.J.: Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci. Rep. 6, 20030 (2016).CrossRefGoogle Scholar
3.Stancescu, M., Molnar, P., McAleer, C.W., McLamb, W., Long, C.J., Oleaga, C., Prot, J.-M., and Hickman, J.J.: A phenotypic in vitro model for the main determinants of human whole heart function. Biomaterials 60, 20 (2015).CrossRefGoogle ScholarPubMed
4.Oleaga, C., Riu, A., Rothemund, S., Lavado, A., McAleer, C.W., Long, C.J., Persaud, K., Narasimhan, N.S., Tran, M., and Roles, J.: Investigation of the effect of hepatic metabolism on off-target cardiotoxicity in a multi-organ human-on-a-chip system. Biomaterials 182, 176 (2018).CrossRefGoogle Scholar
5.Smith, A., Long, C., Pirozzi, K., Najjar, S., McAleer, C., Vandenburgh, H., and Hickman, J.: A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro. J. Biotechnol. 185, 15 (2014).CrossRefGoogle ScholarPubMed
6.Deng, J., Qu, Y., Liu, T., Jing, B., Zhang, X., Chen, Z., Luo, Y., Zhao, W., Lu, Y., and Lin, B.: Recent organ-on-a-chip advances toward drug toxicity testing. Microphysiol. Syst 2, 8 (2018).Google Scholar
7.Wilson, K., Molnar, P., and Hickman, J.J.: Integration of functional myotubes with a Bio-MEMs device for non-invasive interrogation. Lab Chip 7, 920922 (2007).CrossRefGoogle ScholarPubMed
8.Esch, M.B., Smith, A.S., Prot, J.-M., Oleaga, C., Hickman, J.J., and Shuler, M.L.: How multi-organ microdevices can help foster drug development. Adv. Drug Del. Rev. 69, 158 (2014).CrossRefGoogle ScholarPubMed
9.Sung, J.H., Srinivasan, B., Esch, M.B., McLamb, W.T., Bernabini, C., Shuler, M.L., and Hickman, J.J.: Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure. Exp. Biol. Med. 239, 1225 (2014).CrossRefGoogle ScholarPubMed
10.Lee, J.H., Hwang, K.S., Park, J., Yoon, K.H., Yoon, D.S., and Kim, T.S.: Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens. Bioelectron. 20, 2157 (2005).CrossRefGoogle ScholarPubMed
11.Isarakorn, D., Linder, M., Briand, D., and De Rooij, N.F.: Evaluation of static measurement in piezoelectric cantilever sensors using a charge integration technique for chemical and biological detection. Meas. Sci. Technol. 21, 075801 (2010).CrossRefGoogle Scholar
12.Mohammadi, V., Mohammadi, S., and Barghi, F.: Piezoelectric Materials and Devices-Practice and Applications. In Piezoelectric Materials and Devices-Practice and Applications, edited by Farzad Ebrahami, (IntechOpen, Rijeka, Croatia, 2013).CrossRefGoogle Scholar
13.Ali, J., Najeeb, J., Ali, M.A., Aslam, M.F., and Raza, A.: Biosensors: their fundamentals, designs, types and most recent impactful applications: a review. J. Biosens. Bioelectron. 8, 235 (2017).CrossRefGoogle Scholar
14.Sangeetha, P. and Juliet, A.V.: MEMS cantilever based immunosensors for biomolecular recognition. Int. J. Comput. Technol. Electron. Eng 2(1), 109114.Google Scholar
15.Johnson, B.N. and Mutharasan, R.: Biosensing using dynamic-mode cantilever sensors: a review. Biosens. Bioelectron. 32, 1 (2012).CrossRefGoogle ScholarPubMed
16.Tadigadapa, S. and Mateti, K.: Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas. Sci. Technol. 20, 092001 (2009).CrossRefGoogle Scholar
17.Das, M., Gregory, C.A., Molnar, P., Riedel, L.M., Wilson, K., and Hickman, J.J.: A defined system to allow skeletal muscle differentiation and subsequent integration with silicon microstructures. Biomaterials 27, 4374 (2006).CrossRefGoogle ScholarPubMed
18.Colón, A., Guo, X., Akanda, N., Cai, Y., and Hickman, J.J.: Functional analysis of human intrafusal fiber innervation by human γ-motoneurons. Sci. Rep. 7, 17202 (2017).CrossRefGoogle ScholarPubMed
19.Rumsey, J.W., Das, M., Bhalkikar, A., Stancescu, M., and Hickman, J.J.: Tissue engineering the mechanosensory circuit of the stretch reflex arc: sensory neuron innervation of intrafusal muscle fibers. Biomaterials 31, 8218 (2010).CrossRefGoogle ScholarPubMed
20.Barkam, S., Saraf, S., and Seal, S.: Fabricated micro-nano devices for in vivo and in vitro biomedical applications. WIRES Nanomed. Nanobi. 5, 544 (2013).CrossRefGoogle ScholarPubMed
21.Chorsi, M.T., Curry, E.J., Chorsi, H.T., Das, R., Baroody, J., Purohit, P.K., Ilies, H., and Nguyen, T.D.: Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 31, 1802084 (2019).CrossRefGoogle ScholarPubMed
22.Frias, C., Reis, J., e Silva, F.C., Potes, J., Simões, J., and Marques, A.: Piezoelectric actuator: searching inspiration in nature for osteoblast stimulation. Compos. Sci. Technol. 70, 1920 (2010).CrossRefGoogle Scholar
23.Mota, C., Labardi, M., Trombi, L., Astolfi, L., D'Acunto, M., Puppi, D., Gallone, G., Chiellini, F., Berrettini, S., Bruschini, L., and Danti, S.: Design, fabrication and characterization of composite piezoelectric ultrafine fibers for cochlear stimulation. Mater. Design. 122, 206 (2017).CrossRefGoogle Scholar
24.Das, M., Wilson, K., Molnar, P., and Hickman, J.J.: Differentiation of skeletal muscle and integration of myotubes with silicon microstructures using serum-free medium and a synthetic silane substrate. Nat. Protoc. 2, 1795 (2007).CrossRefGoogle Scholar
25.Natarajan, A., Stancescu, M., Dhir, V., Armstrong, C., Sommerhage, F., Hickman, J.J., and Molnar, P.: Patterned cardiomyocytes on microelectrode arrays as a functional, high information content drug screening platform. Biomaterials 32, 4267 (2011).CrossRefGoogle ScholarPubMed
26.Wilson, K., Das, M., Wahl, K.J., Colton, R.J., and Hickman, J.J.: Measurement of contractile stress generated by cultured rat muscle on silicon cantilevers for toxin detection and muscle performance enhancement. PLoS ONE 5, e11042 (2010).CrossRefGoogle ScholarPubMed
27.Oleaga, C., Lavado, A., Riu, A., Rothemund, S., Carmona-Moran, C.A., Persaud, K., Yurko, A., Lear, J., Narasimhan, N.S., and Long, C.J.. Long-term electrical and mechanical function monitoring of a human-on-a-chip system. Adv. Funct. Mater. 29, 1805792 (2019).CrossRefGoogle Scholar
28.McAleer, C., Long, C., Elbrecht, D., Sasserath, T., Bridges, L., Rumsey, J., Martin, C., Schnepper, M., Wang, Y., Schuler, F., Roth, A., Funk, C., Shuler, M., and Hickman, J.: Multi-organ system for the evaluation of anti-cancer therapeutics on efficacy and off-target toxicity. Sci. Trans. Med 11(497), eaav1386 (2019).CrossRefGoogle Scholar
29.Pirozzi, K., Long, C., McAleer, C., Smith, A., and Hickman, J.: Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device. Appl. Phys. Lett. 103, 083108 (2013).CrossRefGoogle Scholar
30.McAleer, C.W., Smith, A.S., Najjar, S., Pirozzi, K., Long, C.J., and Hickman, J.J.: Mechanistic investigation of adult myotube response to exercise and drug treatment in vitro using a multiplexed functional assay system. J. Appl. Physiol. 117, 1398 (2014).CrossRefGoogle ScholarPubMed
31.Grosberg, A., Alford, P.W., McCain, M.L., and Parker, K.K.: Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11, 4165 (2011).CrossRefGoogle ScholarPubMed
32.Liu, W., Feng, Z., Liu, R., and Zhang, J.: The influence of preamplifiers on the piezoelectric sensor's dynamic property. Rev. Sci. Instrum. 78, 125107 (2007).CrossRefGoogle ScholarPubMed
33.Haring, A.P., Sontheimer, H., and Johnson, B.N.: Microphysiological human brain and neural systems-on-a-chip: potential alternatives to small animal models and emerging platforms for drug discovery and personalized medicine. Stem Cell Rev. Rep. 13, 381 (2017).CrossRefGoogle ScholarPubMed
34.Luni, C., Serena, E., and Elvassore, N.: Human-on-chip for therapy development and fundamental science. Curr. Opin. Biotech. 25, 45 (2014).CrossRefGoogle ScholarPubMed
Supplementary material: File

Coln et al. supplementary material

Figure S1

Download Coln et al. supplementary material(File)
File 133.2 KB