Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-03T01:06:54.230Z Has data issue: false hasContentIssue false

Aluminum Spiking Mechanism in Contact Holes Studied by High-Resolution Analytical TEM

Published online by Cambridge University Press:  10 February 2011

H. Cerva
Affiliation:
Siemens AG, Corporate Technology, Otto Hahn Ring 6, D-81730 München, Germany
V. Klüppel
Affiliation:
Siemens AG, Corporate Technology, Otto Hahn Ring 6, D-81730 München, Germany
H. J. Barth
Affiliation:
Siemens AG, Semiconductor Group, Otto Hahn Ring 6, D-81730 München, Germany
H. Helneder
Affiliation:
Siemens AG, Semiconductor Group, Otto Hahn Ring 6, D-81730 München, Germany
Get access

Abstract

Al-spiking in contacts to Si were studied on a microscopic scale by a detailed cross sectional TEM analysis. Electron spectroscopic imaging and energy dispersive x-ray microanalysis with a I nm high-current electron probe formed by a field emission gun helped to identify the Al-diffusion paths and the reaction mechanisms which lead to contact failure. Combinations of advanced PVD-Ti/TiN barrier layers and cold/hot or high-pressure AlSiCu-fills revealed that the highly rugged TiN barrier sidewalls and thick Ti sidewall layers are the weak points which cause Al-spiking.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barth, H.J., Mat.Res.Soc.Symp.Proc. 427, 253 (1996).10.1557/PROC-427-253Google Scholar
2. Barth, H.J., Cerva, H., Klüppel, V., Advanced Metallization and Interconnect Systems for ULSI Applications in 1996, Conf. Proc.ULSI XII, Eds. Havemann, R., Schmitz, J., Komiyama, H., Tsubouchi, K., (Mat.Res.Soc., Pittsburgh, PA, 1997) p. 305.Google Scholar
3. Barth, H.J., Frank, M., Röhl, S., Schneegans, M., Wendt, H., Dobson, C.D., Rich, P., Buchanan, K.E., Harris, M.G.M., Proc. 12th Int. VLSI Multilevel Interconnection Conf. (VMIC) (Santa Clara, CA, 1995) p.52.Google Scholar
4. Hofer, F., Grogger, W., Kothleitner, G., Warbichler, P., Ultramicroscopy 67, 83 (1997).Google Scholar
5. Okihara, M., Hirashita, N., Hashimoto, K., Onoda, H., Appl.Phys.Lett. 66, 1328 (1995).Google Scholar
6. Sobue, S., Mukainakano, S., Ueno, Y., Hattori, T., Jpn.J.Appl.Phys. 34, 987 (1995).10.1143/JJAP.34.987Google Scholar
7. Oppolzer, H., Cerva, H., Fruth, C., Huber, V., Schild, S., Inst.Conf.Ser. 87, 433 (1987).Google Scholar
8. Kohlhase, A., Mändl, M., Pamler, W., J.Appl.Phys. 65, 2464 (1989).10.1063/1.342816Google Scholar
9. Joswig, H., Pamler, W., Thin Solid Films 221, 228 (1992).Google Scholar
10. Landolt-Börnstein, , New Series 111/26, “Diffusion in Solid Metals and Alloys”, (Springer-Verlag, Berlin 1990).Google Scholar
11. Gagnon, G., Gujarathi, S.C., Caron, M., Currie, J.F., Tremblay, Y., Ouellet, L., Biberger, M., Reynolds, R., J.Appl.Phys. 80, 188 (1996).Google Scholar