Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-02T00:16:52.220Z Has data issue: false hasContentIssue false

Amorphous Silicon Three Color Detector

Published online by Cambridge University Press:  15 February 2011

H. Stiebig
Affiliation:
Universität-GH-Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
J. Giehl
Affiliation:
Universität-GH-Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
D. Knipp
Affiliation:
Universität-GH-Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
P. Rieve
Affiliation:
Universität-GH-Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
M. Böhm
Affiliation:
Universität-GH-Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
Get access

Abstract

Band gap and defect engineered amorphous silicon based nipin photo diodes with bias controlled spectral response have been fabricated successfully. The devices exhibit good linearity over a wide illumination range and linearly independent spectral response curves which are required to generate a standard RGB-signal. In the bias range from -1.5 V to 1.5 V a dynamic range exceeding 90 dB for two color sensors and 80 dB for three color sensors has been observed. The general operation principle of the multispectral photo diode is discussed using a numerical simulation program. The model describes the defect state distribution of dangling bonds according to the defect-pool model and uses coherent wave propagation in the device to calculate the profile of photo generated carriers. Additionally, an analytical model has been developed to be included into standard circuit simulation programs like SPICE (Simulation Program with Integrated Circuit Emphasis). The analytical model uses linear field approximations in both i-layers of the device.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Powell, M. J., French, I. D., Hughes, J. R., Bird, N. C., Davies, O. S., Glasse, C., Curran, J. E., Mat. Res. Soc. Symp. Proc. 258, 1127 (1992).Google Scholar
2. Street, R. A., Fujieda, I., Weisfield, R., Nelson, S., Nylen, P., Mat. Res. Soc. Symp. Proc. 258, 1145 (1992).Google Scholar
3. Manabe, S. et al., IEEE Trans. Electron Devices 38, 1765 (1991).Google Scholar
4. Fischer, H., Schulte, J., Giehl, J., Böhm, M., Schmitt, J. P. M., Mat. Res. Soc. Symp. Proc. 285, 1139 (1992).Google Scholar
5. Zhu, Q., Stiebig, H., Rieve, P., Fischer, H. and Böhm, M., Mat. Res. Soc. Symp. Proc. 336, 843 (1994).Google Scholar
6. Fischer, H., Schulte, J., Rieve, P., Böhm, M., Mat. Res. Soc. Symp. Proc. 336, 867 (1994).Google Scholar
7. Schulte, J., Fischer, H., Lulé, T., Zhu, Q., Böhm, M., Micro System Technologies 94, ed. Reichl, H., Heuberger, A. (VDE-Verlag, Berlin, 1994), p. 783 Google Scholar
8. Fischer, H., Lulé, T., Schneider, B., Schulte, J., Böhm, M., Sensors and Control for Advanced Automation, edited by Becker, M., Daniel, R. W., Loffeld, O., Proc. SPIE 2247, 282 (1994).Google Scholar
9. Schulte, J., Fischer, H., Böhm, M., Sensors and Control for Advanced Automation, edited by Becker, M., Daniel, R. W., Loffeld, O., Proc. SPIE 2247, 292 (1994).Google Scholar
10. Fang, Y. K., Hwang, S. B., Chen, Y. W., Kuo, L. C., IEEE Electron Dev. Lett. 12, 172 (1991).Google Scholar
11. de Cesare, G., Di Rosa, P., La Monica, S., Salotti, R., Schirone, L., Saggio, G., Verona, E., J. Non-Cryst. Solids 164–166, 789 (1993).Google Scholar
12. Tsai, H.-K. and Lee, S.-C., Appl. Phys. Lett. 52, 275 (1988).Google Scholar
13. Stiebig, H. and Böhm, M., J. Non-Cryst. Solids 164–166, 785 (1993).Google Scholar
14. Powell, M. J. and Deane, S. C., Phys. Rev. B 48, 10815 (1993).Google Scholar
15. Siebke, F. and Stiebig, H., Mat. Res. Soc. Symp. Proc. 336, 371 (1994).Google Scholar
16. Stiebig, H., Kreisel, A., Nicque, J.-L., Eickhoff, T., Beneking, C., Wagner, H., Proc. of the 12th European Photovoltaic Solar Energy Conference, edited by Hill, R. (Harwood Academic Publishers, 1994), p. 164.Google Scholar
17. Stiebig, H., Kreisel, A., Winz, K., Meer, M., Schultz, N., Beneking, C., Eickhoff, T., Wagner, H., First World Conference on Photovoltaic Energy Conversion (WCPEC), Waikoloa, Hawaii, 05.-09. December (1994).Google Scholar
18. Crandall, R. S., J. Appl. Phys. 54, 7176 (1983).Google Scholar
19. Furlan, J., Smole, F., Popovic, P., Proc., Proc. of the 11th European Photovoltaic Solar Energy Conference, edited by Hill, R. (Harwood Academic Publishers, 1992), p. 653.Google Scholar
20. Zhu, Q., Stiebig, H., Rieve, P., Giehl, J., Sommer, M., Böhm, M., Sensors and Control for Advanced Automation, edited by Becker, M., Daniel, R. W., Loffeld, O., Proc. SPIE 2247, 301 (1994).Google Scholar
21. Eickhoff, T., Ulrichs, P., Stiebig, H., Grünen, W., Reetz, W., Wagner, H., First World Conference on Photovoltaic Energy Conversion (WCPEC), Waikoloa, Hawaii, 05. - 09. December (1994).Google Scholar
22. Stiebig, H. and Böhm, M., Mat. Res. Soc. Symp. Proc. 297, 963 (1993).Google Scholar