Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-01T05:43:24.876Z Has data issue: false hasContentIssue false

An Electron Paramagnetic Resonance and Photoelectron Spectroscopy Study on the Native Oxidation of CuGaSe2

Published online by Cambridge University Press:  01 February 2011

R. Würz
Affiliation:
Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
A. Meeder
Affiliation:
Hahn-Meitner-Institut, Abteilung SE2, Glienicker Strasse 100, D-14109 Berlin, Germany
D. Fuertes Marrón
Affiliation:
Hahn-Meitner-Institut, Abteilung SE2, Glienicker Strasse 100, D-14109 Berlin, Germany
Th. Schedel-Niedrig
Affiliation:
Hahn-Meitner-Institut, Abteilung SE2, Glienicker Strasse 100, D-14109 Berlin, Germany
K. Lips
Affiliation:
Hahn-Meitner-Institut, Abteilung SE1, Kekuléstrasse 5, D-12489 Berlin, Germany
Get access

Abstract

The complementary techniques of electron paramagnetic resonance (EPR) and photoelectron spectroscopy (PES) have been used to study the native oxidation of CuGaSe2 crystals and polycrystalline thin films. After storage of specimen under ambient conditions for few months, an EPR signal occurred which is assigned to Cu2+ and is found independently from the sample morphology. This signal is due to the formation of a copper hydroxide surface phase, Cu(OH)2, observed only after long term oxidation. Chemical etching in KCN removes and thermal reduction by annealing in vacuum at 200°C reduces this Cu(OH)2 surface phase as proved by EPR and PES. Implications for solar cell device performance will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Saad, M., Riazi-Nejad, H., Bucher, E., and Lux-Steiner, M. Ch., in 1st World Conference on Photovoltaic Energy Conversion (IEEE, Hawaii, 1994), p. 214; M. Saad, H. Riazi, E. Bucher, and M. Ch. Lux-Steiner, Appl. Phys. A: Mater. Sci. Process. 62, 181 (1996).Google Scholar
2 Young, D. L., Keane, J., Duda, A., AabuShama, J. A. M., Perkins, C. L., Romero, M., and Noufi, R., Prog. Photovoltaics 11, 535 (2003).Google Scholar
3 Nadenau, V., Hariskos, D., and Schock, H. W., in 14th European Photovoltaic Solar Energy Conference, edited by Ossenbrink, H., Helm, P., and Ehmann, H. (Stephens & Associates, Barcelona, 1997), p. 1250.Google Scholar
4 Hariskos, D., Bilger, G., Braunger, D., Ruckh, M., and Schock, H. W., Inst. Phys. Conf. Ser. 152 707 (1997).Google Scholar
5 Birkholz, M., Kanschat, P., Weiss, T., Czerwensky, M., and Lips, K, Phys. Rev. B 59, 12268 (1999).Google Scholar
6 Birkholz, M., Kanschat, P., Weiss, T., and Lips, K., Thin Solid Films 361, 243 (2000).Google Scholar
7 Nishi, T., Medvedkin, G. A., Katsumata, Y., Sato, K., and Miyake, H., Jpn. J. Appl. Phys. Part 1 40, 59 (2001); T. Nishi, Y. Katsumata, K. Sato, and H. Miyake, Sol. Energy Mater. Sol. Cells 67, 273 (2001).Google Scholar
8 Medvedkin, G. A., Nishi, T., Katsumata, Y., Miyake, H., and Sato, K., Sol. Energy Mater. Sol. Cells 75, 135 (2003).Google Scholar
9 Fischer, D., Meyer, N., Kuczmik, M., Beck, M., Jäger-Waldau, A., and Lux-Steiner, M. Ch., Sol. Energy Mater. Sol. Cells 67, 105 (2001).Google Scholar
10 Fischer, D., Dylla, T., Meyer, N., Beck, M. E., Jäger-Waldau, A., and Lux-Steiner, M. Ch., Thin Solid Films 387, 63 (2001).Google Scholar
11 Würz, R., Fuertes, D. Marrón, Meeder, A., Rumberg, A., Babu, S. M., Schedel-Niedrig, Th., Bloeck, U., Schubert Bischoff, P., and Lux-Steiner, M. Ch., Thin Solid Films 431, 398 (2003); patent No. DE 102 47 735.3; international patent PCT/DE03/03371.Google Scholar
12 Würz, R., Meeder, A., Marrón, D. Fuertes, Schedel-Niedrig, Th., Knop-Gericke, A., Lips, K., Phys. Rev. B 70, 205321 (2004).Google Scholar
13 Fischer, D., Ph.D. thesis, Free University of Berlin, 2000.Google Scholar
14 Hashimoto, Y., Kohara, N., Negami, T., Nishitani, M., and Wada, T., Jpn. J. Appl. Phys., Part 1 35, 4760 (1996).Google Scholar
15 Olsen, L. C., Addis, F. W., Huang, L., Shafarman, W. N., Eschbach, P., and Exarhos, G. J., Conference Record of the 28th IEEE Photovoltaic Specialists Conference-2000, Piscataway, NJ, 2000, p. 458.Google Scholar
16 Jasenek, A., Rau, U., Nadenau, V., and Schock, H. W., J. Appl. Phys. 87, 594 (2000).Google Scholar
17 Meeder, A., Weinhardt, L., Stresing, R., Fuertes, D., Würz, R., Babu, S. M., Schedel-Niedrig, T., Ch. Lux-Steiner, M., Heske, C. and Umbach, E., J. Phys. Chem. Solids 64, 1553 (2003).Google Scholar
18 Kazmerski, L. L., Jamjoum, O., Ireland, P. J., and Deb, S. K., J. Vac. Sci. Technol. 19, 467 (1981).Google Scholar
19 Fiermans, L., Hoogewijs, R., and Vennik, J., Surf. Sci. 47, 1 (1975).Google Scholar
20 McIntyre, N. S. and Cook, M. G., Anal. Chem. 47, 2208 (1975).Google Scholar
21 Erich Pietsch, E. H., Gmelins Handbuch der anorganischen Chemie (Verlag Chemie, Weinheim, 1958), Kupfer Teil B, System Nr. 60.Google Scholar